
21

Concurrent Binary Trees
(with application to longest edge bisection)

JONATHAN DUPUY, Unity Technologies

Fig. 1. A crack-free, 54×54 km terrain produced and rendered entirely on the GPU using the Unity game-
engine. Internally, the engine leverages our new concurrent binary-tree data-structure to compute adaptive
triangle tessellations on the GPU. Our concurrent data-structure is lightweight, easy to implement and can
be used to accelerate various computer graphics applications such as this adaptive terrain renderer, which
renders in less than five milliseconds at full-HD resolution on an NVIDIA RTX 2080 GPU.

We introduce the concurrent binary tree (CBT), a novel concurrent representation to build and update arbitrary

binary trees in parallel. Fundamentally, our representation consists of a binary heap, i.e., a 1D array, that

explicitly stores the sum-reduction tree of a bitfield. In this bitfield, each one-valued bit represents a leaf

node of the binary tree encoded by the CBT, which we locate algorithmically using a binary-search over

the sum-reduction. We show that this construction allows to dispatch down to one thread per leaf node and

that, in turn, these threads can safely split and/or remove nodes concurrently via simple bitwise operations

over the bitfield. The practical benefit of CBTs lies in their ability to accelerate binary-tree-based algorithms

with parallel processors. To support this claim, we leverage our representation to accelerate a longest-edge-

bisection-based algorithm that computes and renders adaptive geometry for large-scale terrains entirely on the

GPU. For this specific algorithm, the CBT accelerates processing speed linearly with the number of processors.

CCS Concepts: • Computing methodologies→Massively parallel algorithms; Rendering.

Additional Key Words and Phrases: binary tree, concurrent, parallel, binary heap, longest edge bisection, GPU,

real-time

ACM Reference Format:
Jonathan Dupuy. 2020. Concurrent Binary Trees (with application to longest edge bisection). Proc. ACM
Comput. Graph. Interact. Tech. 3, 2, Article 21 (August 2020), 20 pages. https://doi.org/10.1145/3406186

Author’s address: Jonathan Dupuy, Unity Technologies, jonathan.dupuy@outlook.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2577-6193/2020/8-ART21 $15.00

https://doi.org/10.1145/3406186

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

https://doi.org/10.1145/3406186
https://doi.org/10.1145/3406186

21:2 Jonathan Dupuy

1 INTRODUCTION
Motivation. Subdivision is a family of recursive algorithms that exhibits some form of exponen-

tial growth with respect to recursion depth. Such behaviors appear in an important number of

applications in computer graphics, including (but not restricted to) quadtrees, octrees and kd-trees,

subdivision curves and surfaces, as well as recursive ray/path tracing. Due to their fundamentally

exponential nature, the computational cost induced by such applications as subdivision depth

increases can quickly become a limitation. In order to amortize this cost, a solution consists in eval-

uating subdivision both adaptively and in parallel. While adaptive subdivision is straightforward to

implement sequentially, it proves to be a challenge to couple with parallel processing in the general

case. In this work, we are interested in addressing this difficulty by introducing a data-structure

suitable for processing adaptive subdivision on parallel processors.

Subdivision as Binary Trees. Our work builds upon the observation that the canonical subdivision
algorithm is that of the binary tree (whose number of leaf nodes doubles at each recursion step).

The binary tree is canonical in the sense that any subdivision algorithm can be viewed as a binary

tree: Under the binary tree interpretation, the leaf nodes describe the recursive state via the path

they form from the root node. It follows that if we are able to process the leaf nodes of a binary

tree in parallel, then we have a means to accelerate any subdivision algorithm. Surprisingly, the

computer graphics literature seems to lack contributions towards this direction, the closest work

being dedicated to constructing BVHs in parallel [Apetrei 2014; Garanzha et al. 2011; Karras 2012].

Unfortunately, these specific trees are unsuitable here as they lack the ability to evolve their

topology through time.

Contributions and Outline. In the following sections, we introduce a novel binary tree data-

structure, which we refer to as a concurrent binary tree (CBT), that is particularly suited for

building and updating binary tree topologies in parallel. CBT are very simple to implement: they

solely consist of a binary heap, i.e., a 1D array (Section 2), of 2
D+1

non-negative integer values,

where D ≥ 0 denotes the maximum subdivision depth of the binary tree we wish to represent;

Figure 4 illustrates the structure of a CBT in the case D = 4. A CBT carries the two following key

properties, both of which are illustrated in the video that supplements this article:

• The last 2
D
elements of the CBT implicitly describe a binary tree of maximum depth D using

binary values, where any element set to one corresponds to a leaf node. We split and/or

merge such leaf nodes in parallel using atomic bitwise operations.

• Each element of the first 2
D
elements of the CBT stores the sum of its two children. This

allows to retrieve the i-th leaf node of the implicit binary tree via a binary-search algorithm,

which runs in O(D) worst-case complexity.

The main benefit of CBTs is that their processing speed increases linearly with the number of

processors. We derive and demonstrate this effectiveness throughout the remainder of this article

as follows:

• We introduce the CBT data-structure along with dedicated algorithms for iterating over,

splitting, and/or merging the leaf nodes of the binary trees they encode (Section 3).

• We derive a generic pipeline suitable for processing CBTs in parallel and show that its

processing speed increases linearly with the number of threads (Section 4).

• We leverage our CBT data-structure to compute adaptive subdivisions using the longest edge

bisection subdivision algorithm in the context of terrain rendering (Section 5).

Note that to emphasize on the practical aspect of our CBT data-structure, we provide all the

algorithms suitable for writing an implementation of CBTs; some source code is also available

online: https://github.com/jdupuy/LongestEdgeBisection2D.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

https://github.com/jdupuy/LongestEdgeBisection2D

Concurrent Binary Trees 21:3

2 PERFECT BINARY TREES AS BINARY HEAPS
The CBT data-structure is closely linked to the binary heap data-structure. In this section, we recall

the fundamental properties of binary heaps that CBTs build upon (Section 2.1). Next, we provide a

high-level overview of the CBT data-structure to position our contribution with respect to binary

heaps (Section 2.2).

2.1 Properties and Definition
A binary tree whose leaf nodes are of same depth forms a perfect binary tree, which has a total

of 2
D+1 − 1 nodes, where D ≥ 0 denotes the depth of the leaf nodes; Figure 2 (a) illustrates the

geometry of a perfect binary tree with leaf nodes of depth D = 4. A binary heap builds upon an

implicit representation for the topology of such trees, which takes the form of an indexing scheme

that we refer to as heap indexing. Heap indexing works as follows: it starts at index 1 for the root

node, and then proceeds with breadth-first increments; Figure 2 (a) shows nodes labelled according

to heap indexing. Such an approach yields the following properties:

Algebraic Relationships. Given a node with heap index k ≥ 1, its parent node has heap index

⌊k/2⌋ and its children have respective heap indexes 2k and 2k + 1; Figure 2 (a) illustrates these
relationships. It follows that at subdivision depth d ≥ 0, the heap indexes range from 2

d
to 2

d+1 − 1.

Additionally, we can retrieve the subdivision depth of any heap index by taking the integer part of

its base-2 logarithm, i.e., dk = ⌊log2(k)⌋ =: FindMSB(k).

Implicit Path Encoding. The binary representation of any heap index carries the entire path from

the root node to the node it is actually indexing, where 0 denotes a one-level descent towards

the left child, and 1 towards the right child. This path is preceded by a most-significant-bit set

to 1, whose bit offset is equal to the node’s subdivision depth. For instance, the node with heap

index 27 = 11011b has most-significant-bit located at bit offset (and hence subdivision depth)

d27 = FindMSB(27) = 4 and path 1011, i.e., right-left-right-right from the root node; Figure 2 (a)

illustrates the link between the binary representation of a heap index and the path it encodes.

Binary Heap Definition. A binary heap of maximum depth D ≥ 0 is a memory-representation for

a perfect binary tree of depth D. It solely consists of an array of fixed-size 2
D+1

, whose elements

are sorted as follows:

– The first element has heap index 0 and stores the depth D of the binary tree.

– The remainder elements store the data associatedwith each node of the tree, ordered according

to their heap index, i.e., the root node’s data is stored at array index 1, etc.

Thanks to this construction, binary heaps provide a pointerless implementation for perfect binary

trees that trivially supports node iteration. In addition, the fact that binary heaps are pointerless

make them appealing for parallel processing on the GPU because GPUs rarely provide support for

pointers (or do so inefficiently).

2.2 Relation to CBTs
The fundamental limitation of binary heaps is that they are restricted to perfect binary trees: while

it is perfectly valid to alter node data within a binary tree stored as a binary heap, its topology has

to remain fixed to that of a perfect binary tree. CBTs provide a means to alleviate this limitation by

providing a pointerless representation for arbitrary binary trees whose topology can be changed

through time; Figure 2 (b) shows an example of an arbitrary binary tree. Interestingly, CBTs are

also binary heaps. This implies a somewhat surprising result: the topology of an arbitrary binary

tree can be represented using a perfect binary tree.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

21:4 Jonathan Dupuy

3 CBT REPRESENTATION
In this section, we derive the CBT data-structure in a self-contained way. First, we show how

to encode an arbitrary binary tree as a bitfield (Section 3.1). In this bitfield, each bit set to one

corresponds to a leaf node, and we show how to efficiently iterate over each one of them using

the reduced-sum of this bitfield (Section 3.2). The association of the bitfield and the reduced-sum

produces a perfect binary tree that we store as a compact binary heap; this compact binary heap

effectively forms a CBT (Section 3.3). Note that this section is solely dedicated to the memory

representation of CBTs and we reserve the discussion of its concurrent properties for the next

section.

3.1 Binary Trees as Bitfields
Here, we show how to encode a binary tree using a bitfield; an informal presentation of the bitfield

is provided in the video that supplements this article.

Bitfield Construction. We represent a binary tree of maximum depth D ≥ 0 using a bitfield of size

2
D
. In this bitfield, each bit set to one encodes a leaf node that we determine unambiguously based

on the number of zeroes that follow; Figure 2 provides two examples of binary trees encoded as

bitfields for the case D = 4. Note that we decode each node by retrieving its associated heap index

k ∈ [1, 2D+1 − 1]. Since the heap indexes we decode carry the path from the root node to each leaf

node as discussed in Section 2, we therefore have access to the entire topology of the binary tree.

Bit to Heap Index. The bit located at index x ∈ [0, 2D − 1] encodes up to N = FindLSB(x) + 1
nodes if x > 0 and N = D + 1 otherwise, where FindLSB returns the index of the least significant

bit; this property is depicted visually in Figure 2, where each bit may encode any node located

above it, e.g., the bit indexes 0, 4 and 14 respectively encode up to 5, 3, and 2 different nodes

whose heap indexes are {16, 8, 4, 2, 1}, {20, 10, 5}, and {30, 15}. We can determine which node is

actually encoded by counting the number of zeroes N0 ∈ [0, 2
D − 1] that follow the bit. Then, the

corresponding node has subdivision depth d = D − log
2
(1 + N0). Since each bit may encode only

one node per subdivision depth, the bitfield provides an unambiguous mapping from bit to heap

index.

Heap to Bit Index. In order to encode a binary tree within our bitfield representation, we simply

set one bit to one per leaf node. We determine which bit to set for each leaf node as follows:

Given a leaf node with heap index k , the bit that encodes it has index xk = k × 2
D−dk − 2D , where

dk = FindMSB(k). This construction allows to implement node splitting and merging operations

straightforwardly.

Node Splitting. Splitting a given node with heap index k translates into setting the bit that encodes

its right child, which has index 2k + 1, to one; Figure 3 shows the impact of node splitting on the

bitfield. What is particularly powerful with this construction is that it is insensitive to splitting

non-leaf nodes: in such cases, we are setting a bit to one multiple times.

Node Merging. Merging two sibling nodes with heap indexes {2d , 2d + 1}, d ∈ [1,D] translates
into setting the bit that encodes the right sibling with bit index x

2
d+1 to zero; Figure 3 shows the

impact of node merging on the bitfield. What is particularly powerful with this construction is that

it is insensitive to merging non-existent nodes: in such cases, we are setting a bit to zero multiple

times.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

Concurrent Binary Trees 21:5

1

0

0

0

0

1

0

0

0

1

0

0

1

0

0

1

0

1

0

1

0

1

01 1 1 1 1 1 1 1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16

1

17

1

18

1

19

1

20

1

21

1

22

1

23

1

24

1

25

1

26

1

27

1

28

1

29

1

30

1

31

1

tree:

bitfield:

1

2 3

4 5 6 7

8 9 10 11 12 13 14

1

15

16 17

0

18

0

19

0

20

1 1

22

1

23

0

24

1

25

0

26

1

27

1

28

1 1

30

1

3121 29

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

1

0

1

0

1

0

1

01 1 1 1 1 1 1 1

tree:

bitfield:

Fig. 2. (top) Illustration of (left) a perfect binary tree and (right) an arbitrary binary tree. (bottom) Equivalent
bitfield representation. The tree nodes are labelled according to their binary heap index and the leaf nodes
are colored according to their depth (the depths for the red, blue, and green nodes are respectively 2, 3, and
4). Each bit set to one in the bitfield is colored according to the leaf node it encodes in the binary tree.

1

2 3

4 5 6 7

8 9 10 11 12 13 14

1

15

16 17

0

18

0

19

0

20

1 1

22

1

23

0

24

1

25

0

26

1

27

1

28

1 1

30

1

3121 29

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

1

0

1

0

1

0

1

01 1 1 1 1 1 1 1

tree:

bitfield:

1

2 3

4 5 6 7

8 9 10 11 12 13 14

1

15

16 17

0

18

1

19

0

20

1 1

22

1

23

0

24

1

25

0

26

1

27

1

28

1 1

30

1

3121 29

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

1

0

1

0

1

0

1

01 1 1 1 1 1 1 1

tree:

bitfield:

Fig. 3. Impact of (left to right) node-splitting and (right to left) node-merging on the bitfield representation of
a binary tree. Under the bitfield representation, node splitting and merging effectively translate into setting
bits to one and zero, respectively (the third bit is affected in this illustration).

2
D = 10000b

_ _

+

16 = 10000b

+

8 = 1000b

+

8 = 1000b

+

4 = 100b

+

4 = 100b

+

4 = 100b

+

4 = 100b

+

2 = 10b

+

2 = 10b

+

2 = 10b

+

2 = 10b

+

2 = 10b

+

2 = 10b

+

2 = 10b

+

2 = 10b

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LSB

MSB

2
D = 10000b

_ _

+

10 = 01010b

+

4 = 0100b

+

6 = 1100b

+

1 = 001b

+

3 = 011b

+

3 = 011b

+

3 = 011b

+

1 = 01b

+

0 = 00b

+

2 = 10b

+

1 = 01b

+

1 = 01b

+

2 = 10b

+

2 = 10b

+

1 = 01b

1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0

LSB

MSB

Fig. 4. Optimized memory representation of CBTs of maximum depth 4. Both CBTs encode the binary trees
from Figure 2, which are constructed bottom-up starting from their respective bitfields. The width of each
block is proportional to its bit-size, where the smallest block is 1-bit wide. The black arrows and gray binary
tree structure respectively denote block contiguity and summing via reduction.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

21:6 Jonathan Dupuy

3.2 Augmenting the Bitfield to a Binary Heap
The bitfield representation from the previous section provides a means to encode and split and/or

merge leaf nodes. What it lacks however is a means to efficiently iterate over the actual leaf nodes

it encodes. This property is especially relevant for large bitfields, as naive bit iterations over the

bitfield grow exponentially with maximum depth.

Introducing the Binary Heap. We augment the bitfield representation to support leaf-node iter-

ation: In order to iterate over the one-bits of a bitfield of size 2
D
, we further compute and store

the reduced-sum of this bitfield. This process can be seen as a bottom-up construction of a perfect

binary tree of depth D, where each leaf node corresponds to a bit in the bitfield. Since we are

dealing with a perfect binary tree, we store it as a binary heap such that the values are stored in

breadth-first order starting from the root (see Section 2); Figure 4 provides the constructions of

two such contiguous memory blocks in the case D = 4. We refer to this binary heap as a CBT of

maximum depth D, and discuss how we quickly retrieve the leaf nodes of the tree it encodes among

other properties in the following paragraphs; an informal presentation of the CBT is provided in

the video that supplements this article.

Maximum Depth of a CBT. Following the binary heap construction from Section 2.1, we store the

maximum depth D of the CBT as its first element at heap index 0. Note that this maximum depth is

set once at the instantiation of a CBT and can not be changed after that.

Number of Leaf Nodes. By construction, the second element of the CBT, which is located at heap

index 1, is the number of leaf nodes L ∈ [0, 2D] it encodes. This property is a first step towards

having the ability to iterate over leaf nodes (see Algorithm 4, line 2).

Leaf to Heap Index. Given a CBT with L leaf nodes, we retrieve the l-th leaf node heap index,

l ∈ [0,L − 1], using a binary search algorithm that runs inO(D)worst-case complexity; Algorithm 1

provides our binary search algorithm. The binary-search algorithm is what allows to quickly iterate

over the leaf nodes of the CBT (see Algorithm 4, lines 3-6).

Algorithm 1 Leaf- to heap-index using a binary search

1: function DecodeNode(CBT: heap, leafID: int)

2: heapID← 1 ▷ initialize to root node

3: while CBT[heapID] > 1 do ▷ binary search loop

4: if leafID < CBT[2 × heapID] then ▷ left child
5: heapID← 2 × heapID

6: else ▷ right child
7: leafID← leafID − CBT[heapID]

8: heapID← 2 × heapID + 1

9: end if
10: end while
11: return heapID

12: end function

3.3 Memory Considerations
In this section, we show how we allocate and access the values stored within a CBT using a minimal

amount of memory. Note that this is not required for understanding the inner workings of the CBT.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

Concurrent Binary Trees 21:7

Rather, we provide it for the sake of completeness and to quantify the memory requirements of

CBTs.

Memory Layout. By construction, the deepest elements of the CBT are binary values. Therefore

we can bound the values produced by the sum reduction at any level, and hence the number of

bits required to represent them within a CBT. More specifically, any value at depth d ∈ [0,D − 1]
requires exactly Nd = D − d + 1 bits. Thus a CBT of maximum depth D requires Nb bits, where

Nb =

d≤D∑
d=0

2
dNd

= 2
D+2 − (D + 3). (1)

In practice, we also allocate D + 1 bits to store the maximum depth of the CBT at heap index 0,

and 2 additional bits to round up the storage requirement to exactly 2
D+2

bits; Figure 4 illustrates

the memory layout of a CBT in the case D = 4, where the 2 additional bits we store are shown on

the top row. Note that although CBTs grow exponentially in size, they remain quite compact at

moderate depths, as, e.g., a CBT of maximum depth D = 16 requires simply 32 KiB of memory.

Data-Access. In order to access the k-th element of the CBT, we need to compute its bit range.

We already know from the previous paragraph that the k-th element consumes Ndk = D − dk + 1
bits, where dk = ⌊log2(k)⌋ and d0 = 0. Therefore, we only require the bit-offset xk ∈ [2, 2

D − 1] of

the k-th element, which is given by

xk = 2
dk+1 + k × Ndk . (2)

Therefore, the k-th element has bit-range [xk , xk + Ndk]. As an example, the first bit of the bitfield

that encodes the leaf nodes of the CBT has heap index k = 2
D
and is thus located within the

bit-range [3 × 2D , 3 × 2D + 1] of the CBT.

4 CBT PROCESSING
With the presentation of the CBT data-structure complete, we now describe a generic pipeline

for initializing and updating it in parallel. Both initialization and update consist of an iteration

step over the bitfield, followed by a sum-reduction. We describe the latter step first and then focus

on the details of the former depending on whether we are initializing or updating the binary tree.

We start with a purely sequential exposition (Section 4.1). Next, we describe a generic pipeline

suitable for updating the CBT in parallel, possibly on the GPU (Section 4.2). Finally, we provide

performance measurements to assess the scalability of CBTs over multiprocessors (Section 4.3).

4.1 Initialization and Update
Sum-Reduction Step. Algorithm 2 provides pseudocode for an implementation of the sum-

reduction step. Given a CBT of maximum depth D, we update the reduced sum following a classic

reduction technique over the 2
D
bits of the bitfield, which parallelizes well on GPUs [Harris et al.

2007]; Figure 4 illustrates the relation between each block of the reduced sum memory. In practice,

this step requires D − 1 steps. Starting from d = D − 1, each step performs 2
d
additions until

reaching the top-level element that provides the total number of leaf nodes encoded in the CBT.

The sum-reduction runs at time-complexity O(D + 2D/P), where P ≥ 1 denotes the number of

processors.

Initialization. Algorithm 3 provides pseudocode for an implementation. Given a CBT of maximum

depth D, our initialization routine builds a binary tree starting at a uniform subdivision depth

d ∈ [0,D]. To achieve this, we set every 2
D−d

bit to one and others to zero in the CBT’s bitfield;

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

21:8 Jonathan Dupuy

Figure 4 (a) provides an example of initialization for the case where d = D = 4. Once this step

complete, we launch the reduction step, which effectively completes the initialization process.

Update. Algorithm 4 provides pseudocode for an implementation. The update step simply iterates

over the leaf nodes that, in turn, can invoke node splitting or merging operations in the CBT. The

decision to invoke such operations is entirely generic and left to the user. Once the iteration

complete, we launch a reduction step, which effectively completes the update.

Algorithm 2 Sum-reduction tree computation

1: procedure ComputeSumReduction(CBT: heap)
2: D←MaxDepth(CBT) ▷ see Alg. 9
3: d ← D − 1
4: while d ≥ 0 do ▷ depth loop

5: for all k ∈ [2d , 2d+1) do ▷ reduction loop

6: CBT[k] = CBT[2k] + CBT[2k + 1] ▷ sum
7: end for
8: d ← d − 1
9: end while
10: end procedure

Algorithm 3 Specific depth initialization

1: procedure InitAtDepth(CBT: heap, d : depth)
2: D←MaxDepth(CBT) ▷ see Alg. 9
3: Memset(CBT, 0)

4: for all heapID ∈ [2d , 2d+1 − 1] do
5: CBT[heapID × 2

D−d
] = 1

6: end for
7: ComputeSumReduction(CBT) ▷ see Alg. 2
8: end procedure

Algorithm 4 Typical update routine

1: procedure Update(CBT: heap)
2: L← NodeCount(CBT) ▷ see Alg. 10
3: for all leafID ∈ [0,L − 1] do ▷ leaf node iteration
4: heapID← DecodeNode(CBT, leafID) ▷ see Alg. 1
5: UserSpecificCallback(CBT, heapID)

6: end for
7: ComputeSumReduction(CBT) ▷ see Alg. 2
8: end procedure

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

Concurrent Binary Trees 21:9

SetMemoryPointers()

DispatchCompute(1) DispatchIndirect()

for each d in [0, D − 1]

DispatchCompute(2D−1−d)

Indirect command memory

DispatcherKernel SubdivisionKernel SumReductionKernel

Concurrent binary tree memory

read/write
access

read-only
access

Fig. 5. Generic pipeline for updating our binary tree representation in parallel. Each kernel is implicitly
followed by a memory barrier operation.

4.2 Updating in Parallel
The algorithms from the previous section can be evaluated in parallel using a parallel-for paradigm.

Here, we provide a parallel and GPU-compatible processing pipeline for the update stage based

on this paradigm. Thanks to the concurrent nature of CBTs, only infinitesimal precautions are

needed to accelerate their sequential processing. As a result, our pipeline consists of three kernels,

the combination of which allows us to progressively compute a binary tree in parallel; Figure 5

diagrams our generic pipeline. We refer to these three kernels as respectively the dispatcher kernel,
the subdivision kernel, and the sum-reduction kernel, which we now describe independently:

Dispatcher Kernel. The dispatcher kernel is only relevant for an asynchronous GPU implementa-

tion, which typically relies on indirect commands provided by modern APIs. It invokes a single

thread that is responsible for preparing a command for the subdivision kernel. In practice, this

simply consists in writing the number of leaf-nodes, i.e., an integer, to a small buffer that stores the

arguments of an indirect command, which is used to invoke threads for the next kernel.

Subdivision Kernel. The subdivision kernel is responsible for deciding whether each leaf node

should split, merge or remain at the same level. It effectively implements a parallel-for loop over

the leaf nodes encoded by the CBT, as shown in Algorithm 4, lines 3-6. This kernel is the only

one that requires special care in the context of parallel-processing: As it may result in concurrent

split and or merge operations of the same leaf nodes, we simply require that the induced bitfield

operations be made atomic (see Algorithm 12). Note that this is straightforward to implement.

Sum-Reduction Kernel. The sum-reduction kernel is a standard reduction algorithm, which

implements the reduction step. The kernel is executed D − 1 times, where D ≥ 0 represents

the maximum depth of the processed CBT, and each execution invokes 2
D−1−d

threads, where

d ∈ [0,D − 1] denotes the d-th kernel execution. It effectively implements a parallel-for loop over

the nodes encoded by the CBT, as shown in Algorithm 2, lines 5-7.

4.3 Synthetic Performance Measurements
The algorithms we have introduced so far provide a means to implement an application based on

dynamic binary tree topologies that exploits multiprocessors. In order to quantify the scalability of

CBT-processing across processor count, we provide here some performance measurements for both

the subdivision and sum-reduction kernels. We conducted the measurements on both a CPU-based

and GPU-based platform using dedicated implementations written respectively in C with OpenMP

and GLSL450 shaders.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

21:10 Jonathan Dupuy

10 15 20 25 30 35

10
−5

10
−3

10
−1

10
1

tree depth

t
i
m
i
n
g
(
s
)

CPU_1

CPU_2

CPU_4

CPU_8

GPU

Fig. 6. Sum-reduction computation timings as a function of tree depth for varying processor counts and
architectures. The CPU is an AMD Ryzen Threadripper 3960X (24-cores) and the GPU an NVIDIA RTX 2080.

8 12 16 20 24 28

10
−5

10
−2

10
1

node count (log2-scale)

t
i
m
i
n
g
(
s
)

CPU_1

CPU_2

CPU_4

CPU_8

GPU

Fig. 7. Subdivision kernel timings as a function of node count for varying processor counts and architectures.
The CPU is an AMD Ryzen Threadripper 3960X (24-cores) and the GPU an NVIDIA RTX 2080.

Sum-Reduction Kernel. We measured the performance of the sum-reduction kernel by initializing

CBTs of varying maximum depth with procedurally-filled bitfields and timing the computing of

their sum-reduction tree, i.e., our parallel implementation of Algorithm 2; Figure 6 provides the

results of our measurements. Note that since the sum-reduction kernel is independent from the

way CBTs are used, we expect its performance and scalability to remain approximately constant on

these platforms.

Subdivision Kernel. The subdivision kernel is highly dependent on the user-specific callback that

determines whether a node should be split or merged (see Algorithm 4, line 5). In order to provide

a significant measurement, we implemented a callback that stochastically splits or merges nodes

based on their heap index. Therefore, our performance measurements for this specific kernel should

only be seen as a measure of scalability. Figure 7 provides the results of our measurements.

Scalability. As demonstrated by the reported timings, the processing speed of CBTs increases

linearly with the number of threads. We also mention that for deep binary trees, the sum-reduction

kernel quickly becomes the bottleneck. In practice, we believe it is safe to expect a sum-reduction

bottleneck whenever the bitfield of the CBT is sparse. We leave it up to the user to determine the

best maximum depth of the CBT based on his application requirements.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

Concurrent Binary Trees 21:11

5 APPLICATION: LONGEST EDGE BISECTION
In this section, we show how to leverage CBTs to compute adaptive triangle subdivisions using

the longest edge bisection (LEB) algorithm. First, we provide some preliminary background on the

LEB algorithm and show how CBTs are relevant for its computation (Section 5.1). In practice, CBTs

provide a means to symbolically manipulate the triangles produced by LEB as heap indexes. We

provide all the necessary algorithms to compute adaptive subdivisions (Section 5.2). Finally we

provide all the implementation details suitable for reproducing our results, along with performance

measurements (Section 5.3).

5.1 Preliminaries
LEB is a subdivision algorithm that consists in recursively splitting triangles in two along their

longest edge; Figure 8 (a) illustrates how LEB operates on a triangle. Note that LEB is quite popular

in the scientific literature, although it tends to appear under different names. Possible names include,

e.g., bisection refinement [Maubach 1995], triangle bintrees [Duchaineau et al. 1997], 4-8 refine-

ment [Velho 2000; Velho and Zorin 2001], diamonds [Weiss and De Floriani 2011; Yalcin et al. 2011],

right-triangulated irregular networks [Evans et al. 2001; Lindstrom et al. 1996], hierarchical simpli-

cial meshes [Atalay and Mount 2007], and finally longest-edge bisection [Lindstrom and Pascucci

2002; Özturan 1996; Rivara 1984]. The reason we choose LEB over any of the aforementioned names

is because it best describes how the subdivision operates. LEB carries the following properties:

Conforming-Adaptive Tessellations. This is a rare and powerful property that motivated us to

implement LEB in the first place: When applied adaptively, LEB produces conforming triangle

tessellations, i.e., free of T-junctions, whenever it is constrained so as to guarantee that no neigh-

boring triangles differ by more than one subdivision level; Figure 8 (c) illustrates this property for

the green and blue triangles. As such, LEB is fundamentally suited for building multi-resolution

tessellations. In order to satisfy such a constraint, it is known [Rivara 1984] that each triangle

subdivision should propagate along a path of d ≥ 0 triangles, where d denotes subdivision depth;

Figure 10 illustrates this property.

Link to Binary Trees. The canonical primitive of LEB is the isosceles right triangle, which splits

into 2 similar triangles at each subdivision step according to the splitting matrices
1

M0 =


1 0 0

1

2
0

1

2

0 1 0

 , and M1 =


0 1 0

1

2
0

1

2

0 0 1

 ; (3)

the result of this process is illustrated in Figure 8 (a) after 1 subdivision step and in Figure 8 (b) after

4 subdivision steps. LEB is thus a self-similar, binary process that runs recursively. As such, it can

be seen as a binary tree, where each node of the tree corresponds to a specific triangle produced by

the subdivision.

Motivation for CBTs. We observe that the binary nature of LEB allows to transpose the problem

of computing it into that of modifying the topology of a binary tree. Under the binary tree inter-

pretation, each triangle produced by LEB corresponds to a node in the binary tree, and only the

leaf nodes form the actual geometry; Figure 8 (a, b) illustrates the tessellations produced by LEB

associated to the binary trees from Figure 2. It follows that CBTs provide an ideal tool to evaluate

LEB by providing a means to manipulate the triangles it produces symbolically as heap indexes; the

1
The LEB splitting matrices apply to the vertices of the input triangle. See Figure 8 (a) for instance, where we have

(A0, B0, C0)
T = M0 × (A, B, C)T and (A1, B1, C1)

T = M1 × (A, B, C)T .

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

21:12 Jonathan Dupuy

k , k0 = 1

A

B C

2k

2k + 1

A0

B0

C0

A1

B1

C1

(a) (b) (c)

16

17

18 19

2021

22

23

24 25

26

27 28

29

30 31

4

2021

11

12

26

27 28

29

15

Fig. 8. (a) LEB rule applied (b) uniformly, and (c) adaptively. The subdivision depths for the red, blue, and
green triangles are respectively 2, 3, and 4.

(a) (b) (c)

8

12

10

14

9

1311

15

16

24

20

28

18

26

22

30

17

25

21

29

19

27

23

31

23

27

17

19

16

24

20

28

18

26

22

3025

21

29

31

Fig. 9. Geometry of (a) a triangle (index 10) and its direct neighbors (index 9, 11, and 13) compared to its (b)
left child (index 20) and (c) right child (index 21). Notice the self-similarity of the configuration across the
subdivision level.

8

5

3

9

8

18 19

3

5

8

18 19

2021

11

3

8

18 19

2021

11

12

13

7

Initial split Propagation steps Final subdivision

Fig. 10. LEB produces conforming geometry whenever a triangle split is propagated along the path that
connects longest-edge neighbors. Here, the propagation path consists of index 10, 5, 6, and 3. Each propagation
step involves exactly 2 splits within the same triangle.

8

18

2021

11

12

13

7

19

8

2021

11

12

13

7

18 19

8

11

12

13

7

18 19

2021

8

11

12

13

7

10

9

Initial merge Sibling check Diamond check Final subdivision

Fig. 11. LEB produces conforming geometry whenever a triangle merge results in decimating an edge of a
diamond-like configuration. Here, the diamond-configuration consists of index 18, 19, 20, and 21. LEB merging
effectively merges 4 triangles into 2.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

Concurrent Binary Trees 21:13

triangles from Figure 8 are labelled according to their heap indexes. For the sake of completeness,

we show below how to decode the triangle produced by LEB from its associated heap index:

Heap Index to Transformation Matrix. Any triangle produced by LEB is similar to the (canonical)

root triangle. As such, they can be linked to one-another via a transformation matrix. Given a

triangle with heap index k ≥ 1, we retrieve the transformation by following the path it encodes

through the binary tree and chaining the proper splitting matrix from Equation (3) via multiplication

at each level. For instance, the transformation matrix associated with heap index 20 = 10100b
isM20 = M0 ×M0 ×M1 ×M0 (notice the reversed multiplication order with respect to the binary

code). Algorithm 5 provides pseudocode for an implementation.

Algorithm 5 LEB matrix computation

1: function LebMatrix(heapID: int)

2: M ← Identity()

3: d ← FindMSB(heapID)

4: for bitID← d − 1; bitID ≥ 0; bitID← bitID - 1 do
5: b ← GetBitValue(heapID, bitID)

6: M ← Mb ×M
7: end for
8: returnM
9: end function

5.2 Dedicated LEB Algorithms for CBTs
Here, we provide the algorithms suitable for evaluating LEB adaptively using a CBT. In order to

produce both adaptive and conforming LEBs, we use a specific procedure depending on whether

we consider triangle splitting or merging. Both procedures rely on a function that retrieves the

heap index of neighboring triangles, so we first introduce this particular function before focusing

on the procedures.

Same Depth Neighboring Heap Indexes. Any triangle produced by LEB has at most three direct

neighbors (one per edge); Figure 9 illustrates the typical geometry of this direct neighborhood.

Given a triangle with heap index k ≥ 1, the neighbor’s heap indexes are retrieved by following the

path encoded by k and mapping the initial 4-vector n = (∅, ∅, ∅, 1) via compositions of either of the

following map:

д0(n) = (2n4 + 1, 2n3 + 1, 2n2 + 1, 2n4), (4)

д1(n) = (2n3 , 2n4 , 2n1 , 2n4 + 1), (5)

using the algebraic rule 2∅ = ∅ + 1 = ∅. Then, the element n3 corresponds to the longest-edge

neighbor, n1 and n2 the 2 others, and n4 = k . For instance, the node index 20 = 10100b yields the

4-vector

(д0 ◦ д1 ◦ д0 ◦ д0)(n) = (21, 19, 27, 20);

Figure 9 (b) illustrates this particular configuration, and Algorithm 6 provides pseudocode for

an implementation. Note that the neighboring heap indexes computed here correspond to those

located at the same subdivision level of that of the input node.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

21:14 Jonathan Dupuy

Algorithm 6 LEB same-depth neighboring heap index computation

1: function LebNeighbors(heapID: int)

2: n← (∅, ∅, ∅, 1)
3: d ← FindMSB(heapID)

4: for bitID← d − 1; bitID ≥ 0; bitID← bitID - 1 do
5: b ← GetBitValue(heapID, bitID)

6: n← дb (n)
7: end for
8: return n
9: end function

Conforming Splitting. This operation consists in splitting a given triangle produced by LEB into

its two children, which is relevant for producing finer geometry. Given a conforming LEB, splitting

a specific triangle will produce a finer conforming LEB if and only if the splitting is propagated

along the path that solely consists of longest-edge neighbors; Figure 10 illustrates this procedure.

Note that it follows trivially that the propagation path is always unique (since triangles have only

one longest-edge neighbor) and consists of at most d ≥ 0 triangles, where d denotes the subdivision

depth of the LEB triangle considered for splitting. Note also that each propagation step involves

exactly 2 splits within the same triangle. Under the binary tree interpretation, conforming splitting

results in invoking several node splits throughout the binary tree. Algorithm 7 provides pseudocode

for an implementation based on CBTs. CBTs provide a means to implement such an operation

straightforwardly despite the topology constraints it imposes.

Algorithm 7 Conforming node splitting for LEB

1: procedure LebSplit(CBT: heap, heapID: int)
2: SplitNode(CBT, heapID) ▷ split the actual triangle
3: heapID← LebNeighbors(heapID).edge ▷ get longest edge neighbor
4: while heapID > 1 do ▷ propagation for conforming tessellations

5: SplitNode(CBT, heapID)

6: heapID← heapID/2

7: SplitNode(CBT, heapID)

8: heapID← LebNeighbors(heapID).edge

9: end while
10: end procedure

Conforming Merging. This operation consists in merging two sibling triangles into their original

triangle, which is relevant for producing coarser geometry. In this respect, conforming triangle-

merging can be seen as the undoing of a conforming-split operation and can therefore be imple-

mented as such. In practice however, this approach leads to ambiguous situations whenever a

triangle located along the propagation path requires splitting [Duchaineau et al. 1997]. Therefore,

we restrict conforming-merging propagation to an edge collapse over a diamond-like configura-

tion; Figure 11 illustrates how the conforming merge process operates. Such an approach requires

the two following conditions to be met. First, the sibling of the triangle considered for merging

should exist. Second, the longest-edge neighbor of the parent triangle should be split exactly once,

thereby forming the diamond-like configuration, which involves two pairs of sibling triangles.

Then, we implement the conforming merging of these two sibling pairs by collapsing the edge

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

Concurrent Binary Trees 21:15

of the diamond-like configuration they form. Under the binary tree interpretation, conforming

merging results in invoking two node merges throughout the binary tree. Algorithm 8 provides

pseudocode for an implementation based on CBTs. CBTs provide a means to implement such an

operation straightforwardly despite the topology constraints it imposes.

Algorithm 8 Conforming node merging for LEB

1: procedure LebMerge(CBT: heap, heapID: int)

2: siblingID← Xor(heapID, 1)

3: diamondID← LebNeighbors(heapID/2).edge

4: leftID← diamondID × 2

5: rightID← diamondID × 2 + 1

6: if IsLeafNode(siblingID, leftID, rightID) then
7: MergeNode(CBT, heapID)

8: MergeNode(CBT, rightID)

9: end if
10: end procedure

5.3 Adaptive Terrain Rendering on the GPU
In order to demonstrate the benefits of CBTs with respect to LEB, we implemented a large-scale

terrain renderer; Figure 1 and Figure 12 show renderings produced by using our implementation.

While LEB has been used before in the context of terrain rendering, we believe that our imple-

mentation is the first to provide efficient parallel algorithms that can run entirely on the GPU.

In the following paragraphs, we provide some implementation details and some performance

measurements.

Implementation Details. Our terrain renderer is written in C++ and GLSL450 shaders. The terrain

consists of a triangulated square that we adaptively subdivide and displace using an 8K×8K, 16-bit

displacement map, as well as some additional slope-dependant procedural noise [Kemen 2009]. For

shading, we compute the exact normals of the terrain and use a diffuse material illuminated by an

Bruneton and Neyret’s precomputed atmosphere model [Bruneton and Neyret 2008]. We represent

the triangulated square as a CBT of maximum depth D = 27, where the two root triangle have heap

indexes 2 and 3. During rendering, we launch a CBT update pipeline as described in Section 4.2

with a subdivision kernel that performs the following operations:

– Heap index decoding. We retrieve the heap index of each leaf node in the CBT as described in

Section 3.2 using Algorithm 1 (see also Algorithm 4, line 4).

– Triangle decoding. We convert each heap index into its associated LEB triangle using Al-

gorithm 5. Note that we reserve the first bit of the heap index for a mirroring matrix to

distinguish the two root triangles within the square.

– Split/Merge Criteria.We then decide to split or merge each triangle so as to avoid sub-pixel

rasterization. In order to further reduce the number of primitives, we also avoid splitting trian-

gles that lie outside of the view-frustum and those that cover locally-flat regions; Figures 1, 12

show the effect of our criteria. Note that we implement conforming triangle splitting and

merging using Algorithms 7, 8 with a slight modification for Algorithm 6: we reserve the

first bit of the heap index to initialize the neighbor vector n to (∅, ∅, 3, 2) and (∅, ∅, 2, 3) for
respectively heap index 2 and 3.

Once the update pipeline complete, we invoke a vertex shader via an indirect command for each

leaf node in the CBT. The vertex shader decodes the triangles produced by our adaptive LEB

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

21:16 Jonathan Dupuy

subdivision, displaces them according to the input displacement map, and sends them down to the

rasterizer for fragment processing. In the case of a triangulated square, our LEB algorithm produces

an edge-subdivision factor as high as 2

D−1
2 . In order to produce even denser tessellations, we also

provide an option to use uniformly-tessellated triangles for each leaf node of the CBT. Note that

our approach allows for only single-subdivision-depth alterations per triangle and per iteration.

This turns out to work well in practice, even for fast camera movements. Our approach allows

us to render a 52-km-wide terrain at 6-meter precision without relying on uniformly tessellated

triangles, and down to 0.1-meter precision otherwise.

Performances. Our terrain implementation takes less than five milliseconds to render at full-HD

resolution on an NVIDIA RTX 2080 GPU. In order to provide more atomic performance evaluations,

we performed the following experiments:

– Geometric Overhead. We measured the performance of our terrain renderer with a fragment

shader that output a constant color so as to measure the overhead caused by geometric

processing. In addition, we also measured the performance of our terrain renderer with

displacement mapping disabled so as to measure the overhead caused by our displacement

procedure. For our tests, the camera’s orientation was fixed, looking downwards, so that

the terrain would occupy the whole framebuffer, thus maintaining constant rasterizeration

activity. Table 1 provides the results of our measurements. As demonstrated by the reported

numbers, the overhead caused by our CBT update pipeline is largely dominated by the

sum-reduction kernel, which takes 1.484ms. As for the rendering kernel, we evaluate that

the use of a CBT adds an overhead of 0.277ms.

– Parallel Processing Scalability.We also conducted a standalone experiment to measure the

scalability of our LEB algorithm with respect to processor count. The experiment consisted

in refining a triangle around a specific point down to a maximum depth of D = 27. We

measured the speed at which the subdivision was computed on a multicore processor by

running the algorithm over a varying number of threads. We also compared our CPU-based

measurements against a GPU-based one. Table 2 provides the results of our measurements.

As demonstrated by the reported numbers, our implementation speeds-up linearly with the

number of processors. We also emphasize that the benefits gained from GPU-acceleration

are considerable, reaching speed-ups of two orders of magnitude with respect to a serial

implementation.

CBT update (D = 27) render

Kernel dispatch subdivision sum-reduction shaded flat w/o disp.

Timing (ms) 0.017 0.035 1.484 1.975 0.390 0.277

Table 1. GPU timings on an NVIDIA RTX 2080 averaged over 100 frames.

Processor 3960X (1) 3960X (2) 3960X (4) 3960X (8) 3960X (16) RTX 2080

Timing (s) 12.55 6.32 3.19 1.62 0.88 0.03

Acceleration ×1 ×1.99 ×3.93 ×7.75 ×14.26 ×418.33

Table 2. LEB-processing scalability using a CBT of maximum depth D = 27 on multiple threads of an
AMD Ryzen Threadripper 3960X CPU with 24 cores, as well as an NVIDIA RTX 2080.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

Concurrent Binary Trees 21:17

[fovy = 90°] [fovy = 30°] [fovy = 10°] [fovy = 3°]

Fig. 12. (top) Frames taken from a zoom-in animation over the terrain. (bottom) Wireframe top-views.

6 DISCUSSION AND FUTUREWORK
We presented CBTs, a concurrent data-structure to compute binary trees in parallel. We see two

main directions that can be taken for future work:

Applications for LEB. The first direction points towards applying our LEB algorithms to other

problems that benefit from adaptive triangle tessellations. In particular, we would be interested

in accelerating the subdivision surface algorithms of Velho [Velho 2000; Velho and Zorin 2001],

as well as the adaptive fluid solver of Ando et al. [2013]. For the latter application, we mention

that an additional algorithm is required to compute the true neighbors of any triangle produced by

LEB; we provide such an algorithm in Appendix B. We would also be interested in deriving the

LEB algorithms suitable for the 3D setting, for which symbolic algorithms are known [Atalay and

Mount 2007; Hebert 1994].

Applications for CBTs. The second directions points towards leveraging CBTs for other techniques
that exhibit tree-like recursion. Straightforward examples would include quadtrees and octrees,

while more complicated ones would include, e.g., dynamic BVHs. In the case of BVHs, we mention

that one would require access to each node of the binary tree (rather than just the leaf nodes), as

well as associate data to each node. If additional data needs to be associated with each node of

the binary tree, two approaches are possible. The first approach is to rely on an additional binary

heap of maximum depth D to store the data. The data associated with each node is then located at

their respective heap index. This is straightforward to implement but can be wasteful in terms of

memory if the binary tree is very sparse with respect to the binary heap. The second approach is to

rely on a sparse array large enough to store data for each leaf node of the binary tree. Then, given

the heap index of a leaf node encoded within a CBT, we retrieve its leaf index using the inverse of

Algorithm 1, which is provided in Algorithm 13. The data associated with each leaf node is then

located at their respective leaf index.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

21:18 Jonathan Dupuy

ACKNOWLEDGMENTS
This paper was written in France during its lockdown due to the COVID-19 pandemic. Thanks

to my fiancée for voicing my supplemental video and supporting me during the deadline when

I was struggling to finish the writing due to breathing issues. I love you very much. Thanks to

Cyril Crassin and Christophe Riccio for nerdy GPU discussions. Thanks to Laurent Belcour, Arthur

Dufay, Eric Heitz, and Kenneth Vanhoey for proofreading early drafts. Thanks to Thomas Deliot

for helping me port my code to the Unity game engine; Figure 1 looks good thanks to him.

REFERENCES
Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly Adaptive Liquid Simulations on Tetrahedral Meshes. ACM

Trans. Graph. 32, 4, Article 103 (July 2013), 10 pages. DOI:http://dx.doi.org/10.1145/2461912.2461982
Ciprian Apetrei. 2014. Fast and Simple Agglomerative LBVH Construction. In Computer Graphics and Visual Computing

(CGVC), Rita Borgo and Wen Tang (Eds.). The Eurographics Association. DOI:http://dx.doi.org/10.2312/cgvc.20141206
F. Betul Atalay and David M. Mount. 2007. Pointerless Implementation of Hierarchical Simplicial Meshes and Efficient

Neighbor Finding in Arbitrary Dimensions. International Journal of Computational Geometry & Applications 17, 06 (2007),
595–631. DOI:http://dx.doi.org/10.1142/S0218195907002495

Eric Bruneton and Fabrice Neyret. 2008. Precomputed Atmospheric Scattering. Computer Graphics Forum 27, 4 (2008),

1079–1086. DOI:http://dx.doi.org/10.1111/j.1467-8659.2008.01245.x
M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-Weinstein. 1997. ROAMing terrain:

Real-time Optimally Adapting Meshes. In Proceedings. Visualization ’97 (Cat. No. 97CB36155). 81–88. DOI:http://dx.doi.
org/10.1109/VISUAL.1997.663860

W. Evans, D. Kirkpatrick, and G. Townsend. 2001. Right-Triangulated Irregular Networks. Algorithmica 30, 2 (June 2001),
264–286. DOI:http://dx.doi.org/10.1007/s00453-001-0006-x

Kirill Garanzha, Jacopo Pantaleoni, and David McAllister. 2011. Simpler and Faster HLBVHwithWork Queues. In Proceedings
of the ACM SIGGRAPH Symposium on High Performance Graphics (HPG ’11). Association for Computing Machinery, New

York, NY, USA, 59–64. DOI:http://dx.doi.org/10.1145/2018323.2018333
Mark Harris and others. 2007. Optimizing parallel reduction in CUDA. Nvidia developer technology 2, 4 (2007), 70.

D.J. Hebert. 1994. Symbolic Local Refinement of Tetrahedral Grids. Journal of Symbolic Computation 17, 5 (1994), 457 – 472.

DOI:http://dx.doi.org/https://doi.org/10.1006/jsco.1994.1029
Tero Karras. 2012. Maximizing Parallelism in the Construction of BVHs, Octrees, and k-d Trees. In Eurographics/ ACM

SIGGRAPH Symposium on High Performance Graphics, Carsten Dachsbacher, Jacob Munkberg, and Jacopo Pantaleoni

(Eds.). The Eurographics Association. DOI:http://dx.doi.org/10.2312/EGGH/HPG12/033-037
Brano Kemen. 2009. Procedural terrain algorithm visualization. (2009). https://outerra.blogspot.com/2009/02/procedural-

terrain-algorithm.html

Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges, Nick Faust, and Gregory A. Turner. 1996. Real-Time,

Continuous Level of Detail Rendering of Height Fields (SIGGRAPH ’96). Association for Computing Machinery, New

York, NY, USA, 109–118. DOI:http://dx.doi.org/10.1145/237170.237217
P. Lindstrom and V. Pascucci. 2002. Terrain simplification simplified: a general framework for view-dependent out-of-

core visualization. IEEE Transactions on Visualization and Computer Graphics 8, 3 (July 2002), 239–254. DOI:http:
//dx.doi.org/10.1109/TVCG.2002.1021577

Joseph M. Maubach. 1995. Local Bisection Refinement for N-Simplicial Grids Generated by Reflection. SIAM Journal on
Scientific Computing 16, 1 (1995), 210–227. DOI:http://dx.doi.org/10.1137/0916014

Can Özturan. 1996. Worst Case Complexity of Parallel Triangular Mesh Refinement by Longest Edge Bisection. Technical
Report. Institute for Computer Applications in Science and Engineering.

M. Cecilia Rivara. 1984. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Internat. J.
Numer. Methods Engrg. 20, 4 (1984), 745–756. DOI:http://dx.doi.org/10.1002/nme.1620200412

Luiz Velho. 2000. Semi-Regular 4-8 Refinement and Box Spline Surfaces. In Proceedings of the 13th Brazilian Symposium on
Computer Graphics and Image Processing (SIBGRAPI ’00). IEEE Computer Society, USA, 131–138.

Luiz Velho and Denis Zorin. 2001. 4–8 Subdivision. Computer Aided Geometric Design 18, 5 (2001), 397–427. DOI:
http://dx.doi.org/https://doi.org/10.1016/S0167-8396(01)00039-5 Subdivision Algorithms.

K. Weiss and L. De Floriani. 2011. Simplex and Diamond Hierarchies: Models and Applications. (2011). DOI:http:
//dx.doi.org/10.1111/j.1467-8659.2011.01853.x

M. Adil Yalcin, Kenneth Weiss, and Leila De Floriani. 2011. GPU Algorithms for Diamond-based Multiresolution Terrain

Processing. In Eurographics Symposium on Parallel Graphics and Visualization, Torsten Kuhlen, Renato Pajarola, and Kun

Zhou (Eds.). The Eurographics Association. DOI:http://dx.doi.org/10.2312/EGPGV/EGPGV11/121-130

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

http://dx.doi.org/10.1145/2461912.2461982
http://dx.doi.org/10.2312/cgvc.20141206
http://dx.doi.org/10.1142/S0218195907002495
http://dx.doi.org/10.1111/j.1467-8659.2008.01245.x
http://dx.doi.org/10.1109/VISUAL.1997.663860
http://dx.doi.org/10.1109/VISUAL.1997.663860
http://dx.doi.org/10.1007/s00453-001-0006-x
http://dx.doi.org/10.1145/2018323.2018333
http://dx.doi.org/https://doi.org/10.1006/jsco.1994.1029
http://dx.doi.org/10.2312/EGGH/HPG12/033-037
https://outerra.blogspot.com/2009/02/procedural-terrain-algorithm.html
https://outerra.blogspot.com/2009/02/procedural-terrain-algorithm.html
http://dx.doi.org/10.1145/237170.237217
http://dx.doi.org/10.1109/TVCG.2002.1021577
http://dx.doi.org/10.1109/TVCG.2002.1021577
http://dx.doi.org/10.1137/0916014
http://dx.doi.org/10.1002/nme.1620200412
http://dx.doi.org/https://doi.org/10.1016/S0167-8396(01)00039-5
http://dx.doi.org/10.1111/j.1467-8659.2011.01853.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01853.x
http://dx.doi.org/10.2312/EGPGV/EGPGV11/121-130

Concurrent Binary Trees 21:19

A SUPPLEMENTAL CBT ALGORITHMS
We provide here the exhaustive list of CBT algorithms for the sake of completeness.

Algorithm 9 Retrieve the maximum depth of a CBT

1: functionMaxDepth(CBT: heap)

2: return CBT[0]

3: end function

Algorithm 10 Retrieve the number of leaf nodes in the CBT

1: function NodeCount(CBT: heap)

2: return CBT[1]

3: end function

Algorithm 11 Check if leaf node

1: function IsLeafNode(CBT: heap, heapID: int)

2: return CBT[heapID] == 1

3: end function

Algorithm 12 Node splitting and merging

1: function BitfieldHeapID(CBT: heap, heapID: int)

2: D ←MaxDepth(CBT) ▷ see Alg. 9
3: d ← FindMSB(heapID)

4: return heapID × 2
D−d

5: end function
6:

7: procedure SplitNode(CBT: heap, heapID: int)
8: heapID← heapID × 2 + 1 ▷ right child
9: heapID← BitfieldHeapID(CBT, heapID) ▷ bit location
10: CBT[heapID]← 1 ▷ This must be done atomically

11: end procedure
12:

13: procedureMergeNode(CBT: heap, heapID: int)

14: heapID← Or(heapID, 1) ▷ right sibling
15: heapID← BitfieldHeapID(CBT, heapID) ▷ bit location
16: CBT[heapID]← 0 ▷ This must be done atomically

17: end procedure

B ADDITIONAL LEB ALGORITHMS
True Neighboring Heap Indexes. The neighboring heap indexes computed in Algorithm 6 corre-

spond to those located at the same subdivision level of that of the input heap index. In the context

of adaptive LEB however, the actual neighboring heap indexes can differ by one subdivision level.

While retrieving the true heap indexes turns out to be irrelevant for implementing the conforming-

split and conforming merge procedures, it can become useful for other applications. Therefore, we

provide the true neighboring heap indexes routines in Algorithm 14.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

21:20 Jonathan Dupuy

Algorithm 13 Heap- to leaf-index using a binary search

1: function EncodeNode(CBT: heap, heapID: int)

2: leafID← 0 ▷ initialize to 0

3: while heapID > 1 do ▷ binary search loop

4: if IsOdd(leafID) then
5: leafID← leafID + CBT[Xor(heapID, 1)]

6: end if
7: heapID← heapID/2

8: end while
9: return leafID

10: end function

Algorithm 14 LEB true neighboring heap index computation

1: function LebTrueNeighbors(CBT: heap, heapID: int)

2: n← LebNeighbors(heapID)

3: if !IsLeafNode(CBT, n.edge) then ▷ See Alg. 11
4: n.edge = n.edge/2
5: end if
6: if !IsLeafNode(CBT, n.left) then ▷ See Alg. 11
7: n.left = n.left × 2 + 1

8: end if
9: if !IsLeafNode(CBT, n.right) then ▷ See Alg. 11
10: n.right = n.right × 2

11: end if
12: return n
13: end function

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 2, Article 21. Publication date: August 2020.

	Abstract
	1 Introduction
	2 Perfect Binary Trees As Binary Heaps
	2.1 Properties and Definition
	2.2 Relation to CBTs

	3 CBT Representation
	3.1 Binary Trees as Bitfields
	3.2 Augmenting the Bitfield to a Binary Heap
	3.3 Memory Considerations

	4 CBT Processing
	4.1 Initialization and Update
	4.2 Updating in Parallel
	4.3 Synthetic Performance Measurements

	5 Application: Longest Edge Bisection
	5.1 Preliminaries
	5.2 Dedicated LEB Algorithms for CBTs
	5.3 Adaptive Terrain Rendering on the GPU

	6 Discussion and Future Work
	Acknowledgments
	References
	A Supplemental CBT Algorithms
	B Additional LEB Algorithms

