
i
i

i
i

i
i

i
i

Adaptive GPU Tessellation
with Compute Shaders
Jad Khoury, Jonathan Dupuy, and

Christophe Riccio

1.1 Introduction

GPU rasterizers are most efficient when primitives project into more than
a few pixels. Below this limit, the Z-buffer starts aliasing, and shad-
ing rate decreases dramatically [Riccio 12]; this makes the rendering of
geometrically-complex scenes challenging, as any moderately distant poly-
gon will project to sub-pixel size. In order to minimize such sub-pixel pro-
jections, a simple solution consists in procedurally refining coarse meshes as
they get closer to the camera. In this chapter, we are interested in deriving
such a procedural refinement technique for arbitrary polygon meshes.

Traditionally, mesh refinement has been computed on the CPU via re-
cursive algorithms such as quadtrees [Duchaineau et al. 97, Strugar 09] or
subdivision surfaces [Stam 98, Cashman 12]. Unfortunately, CPU-based
refinement is now fundamentally bottlenecked by the massive CPU-GPU
streaming of geometric data it requires for high resolution rendering. In
order to avoid these data transfers, extensive work has been dedicated
to implement and/or emulate these recursive algorithms directly on the
GPU by leveraging tessellation shaders (see, e.g., [Niessner et al. 12,Cash-
man 12,Mistal 13]). While tessellation shaders provide a flexible, hardware-
accelerated mechanism for mesh refinement, they remain limited in two
respects. First, they only allow up to log2(64) = 6 levels of subdivision.
Second, their performance drops along with subdivision depth [AMD 13].

In the following sections, we introduce a GPU-based refinement scheme
that is free from the limitations incurred by tessellation shaders. Specif-
ically, our scheme allows arbitrary subdivision levels at constant memory
costs. We achieve this by manipulating an implicit (triangle-based) subdi-
vision scheme for each polygon of the scene in a dedicated compute shader
that reads from and writes to a compact, double-buffered array. First, we
show how we manage our implicit subdivision scheme in Section 1.2. Then,
we provide implementation details for rendering programs we wrote that
leverage our subdivision scheme in Section 1.3.

1

i
i

i
i

i
i

i
i

2 1. Adaptive GPU Tessellation with Compute Shaders

0

1

(a) (b) (c)

0000

0001

0010 0011

01000101

0110

0111

1000 1001

1010

1011 1100

1101

1110 1111

0101 0100

1011 1100

1010 1101

111

011

100

00

Figure 1.1. The (a) subdivision rule we apply on a triangle (b) uniformily and
(c) adaptively. The subdivision levels for the red, blue, and green nodes are
respectively 2, 3, and 4.

1.2 Implicit Triangle Subdivision

1.2.1 Subdivision Rule

Polygon refinement algorithms build upon a subdivision rule. The subdi-
vision rule describes how an input polygon splits into sub-polygons. Here,
we rely on a binary triangle subdivision rule, which is illustrated in Fig-
ure 1.1 (a). The rule splits a triangle into two similar sub-triangles 0 and 1,
whose barycentric-space transformation matrices are respectively

M0 =

−1/2 −1/2 1/2
−1/2 1/2 1/2

0 0 1

 , (1.1)

and

M1 =

 1/2 −1/2 1/2
−1/2 −1/2 1/2

0 0 1

 . (1.2)

Listing 1.1 shows the GLSL code we use to procedurally compute either
M0 or M1 based on a binary value. It is clear that at subdivision level
N ≥ 0, the rule produces 2N triangles; Figure 1.1 (b) shows the refinement
produced at subdivision level N = 4, which consists of 24 = 16 triangles.

mat3 bitToXform(in uint bit)
{

float s = float(bit) - 0.5;
vec3 c1 = vec3(s, -0.5, 0);
vec3 c2 = vec3(-0.5, -s, 0);
vec3 c3 = vec3 (+0.5 , +0.5, 1);

return mat3(c1, c2 , c3);
}

Listing 1.1. Computing the subdivision matrix M0 or M1 from a binary value.

i
i

i
i

i
i

i
i

1.2. Implicit Triangle Subdivision 3

1.2.2 Implicit Representation

By construction, our subdivision rule produces unique sub-triangles at each
step. Therefore, any sub-triangle can be represented implicitly via concate-
nations of binary words, which we call a key. In this key representation,
each binary word corresponds to the partition (either 0 or 1) chosen at a
specific subdivision level; Figure 1.1 (b, c) shows the keys associated to
each triangle node in the context of (b) uniform and (c) adaptive subdi-
vision. We retrieve the subdivision matrix associated to each key through
successive matrix multiplications in a sequence determined by the binary
concatenations. For example, letting M0100 denote the transformation ma-
trix associated to the key 0100, we have

M0100 = M0 ×M1 ×M0 ×M0. (1.3)

In our implementation, we store each key produced by our subdivision rule
as a 32-bit unsigned integer. Below is the bit representation of a 32-bit
word, encoding the key 0100. Bits irrelevant to the code are denoted by
the ‘ ’ character.

MSB LSB

____ ____ ____ ____ ____ ____ ___1 0100

Note that we always prepend the key’s binary sequence with a binary value
of 1 so we can track the subdivision level associated to the key easily.
Listing 1.2 provides the GLSL code we use to extract the transformation
matrix associated to an arbitrary key.

mat3 keyToXform(in uint key)
{

mat3 xf = mat3 (1);

while (key > 1u) {
xf = bitToXform(key & 1u) * xf;
key = key >> 1u;

}

return xf;
}

Listing 1.2. Key to transformation matrix decoding routine.

Since we use 32-bit integers, we can store up to a 32− 1 = 31 levels of
subdivision, which includes the root node. Naturally, more levels require
longer words. Because longer integers are currently unavailable on many
GPUs, we emulate them using integer vectors, where each component rep-
resents a 32-bit wide portion of the entire key. For more details, see our
implementation, where we provide a 63-level subdivision algorithm using
the GLSL uvec2 datatype.

i
i

i
i

i
i

i
i

4 1. Adaptive GPU Tessellation with Compute Shaders

1.2.3 Iterative Construction

Subdivision is recursive by nature. Since GPU execution units lack stacks,
implementing GPU recursion is difficult. In order to circumvent this diffi-
culty, we store the triangles produced by our subdivision as keys inside a
buffer that we update iteratively in a ping-pong fashion; we refer to this
double-buffer as the subdivision buffer. Because our keys consists of inte-
gers, our subdivision buffer is very compact. At each iteration, we process
the keys independently in a compute shader, which is set to write in the
second buffer. We allow three possible outcomes for each key: it can be
subdivided to the next level, downgraded to the previous subdivision level,
or conserved as is. Such operations are very straightforward to implement
thanks to our key representation. The following bit representations match
the parent of the key given in our previous example along with its two
children:

MSB LSB

parent: ____ ____ ____ ____ ____ ____ ____ 1010

key: ____ ____ ____ ____ ____ ____ ___1 0100

child1: ____ ____ ____ ____ ____ ____ __10 1000

child2: ____ ____ ____ ____ ____ ____ __10 1001

Note that compared to the key representation, the other keys are either
1-bit expansions or contractions. The GLSL code to compute these repre-
sentations is shown in Listing 1.3; it simply consists of bitshifts and logical
operations, and is thus very cheap.

uint parentKey(in uint key)
{

return (key >> 1u);
}

void childrenKeys(in uint key , out uint children [2])
{

children [0] = (key << 1u) | 0u;
children [1] = (key << 1u) | 1u;

}

Listing 1.3. Implicit subdivision procedures in GLSL.

Listing 1.4 provides the pseudocode we typically use for updating the
subdivision buffer in a GLSL compute shader. In practice, if a key needs to
be split, it emits two new words, and the original key is deleted. Conversely,
when two sibling keys must merge, they are replaced by their parent’s key.
In order to avoid generating two copies of the same key in memory, we
only emit the key once from the 0-child, identified using the test provided
in Listing 1.5. We also provide some unit tests we perform on the keys
to avoid producing invalid keys in Listing 1.6. For the keys that do not
require any modification, they are simply re-emitted, unchanged.

i
i

i
i

i
i

i
i

1.2. Implicit Triangle Subdivision 5

buffer keyBufferOut { uvec2 u_SubdBufferOut []; };
uniform atomic_uint u_SubdBufferCounter;

// write a key to the subdivision buffer
void writeKey(uint key)
{

uint idx = atomicCounterIncrement(u_SubdBufferCounter);
u_SubdBufferOut[idx] = key;

}

// general routine to update the subdivision buffer
void updateSubdBuffer(uint key , int targetLod)
{

// extract subdivision level associated to the key
int keyLod = findMSB(key);

// update the key accordingly
if (/* subdivide ? */ keyLod < targetLod && !isLeafKey(key)) {

uint children [2]; childrenKeys(key , children);

writeKey(children [0]);
writeKey(children [1]);

} else if (/* keep ? */ keyLod == targetLod) {
writeKey(key);

} else /* merge ? */ {
if (/* is root ? */ isRootKey(key)) {

writeKey(key);
} else if (/* is zero child ? */ isChildZeroKey(key)) {

writeKey(parentKey(key));
}

}
}

Listing 1.4. Updating the subdivision buffer on the GPU.

bool isChildZeroKey(in uint key) { return (key & 1u == 0u); }

Listing 1.5. Determining if the key represents the 0-child of its parent.

bool isRootKey(in uint key) { return (key == 1u); }
bool isLeafKey(in uint key) { return findMSB(key) == 31; }

Listing 1.6. Determining whether a key is a root key or a leaf key.

It should be clear that our approach maps very well to the GPU. This
allows us to compute adaptive subdivisions such as the one shown in Fig-
ure 1.1 (c). Note that an iteration only permits a single refinement or
coarsening operation per key. Thus when more are needed, multiple buffer
iterations should be performed. In our rendering implementations, we per-
form a single buffer iteration at the beginning of each frame.

i
i

i
i

i
i

i
i

6 1. Adaptive GPU Tessellation with Compute Shaders

1.2.4 Conversion to Explicit Geometry

For the sake of completeness, we provide here some additional details on
how we convert our implicit subdivision keys into actual geometry. We
achieve this easily with GPU instancing. Specifically, we instantiate a
triangle for each subdivision key located in our subdivision buffer. For
each instance, we determine the location of the triangle vertices using the
routines of Listing 1.7. Note that these routines focus on computing the
coordinates of the vertices of the subdivided triangles; extending them to
handle other attributes such as normals or texture coordinates is straight-
forward.

// barycentric interpolation
vec3 berp(in vec3 v[3], in vec2 u)
{

return v[0] + u.x * (v[1] - v[0]) + u.y * (v[2] - v[0]);
}

// subdivision routine (vertex position only)
void subd(in uint key , in vec3 v_in[3], out vec3 v_out [3])
{

mat3 xf = keyToXform(key);
vec2 u1 = (xf * vec3(0, 0, 1)).xy;
vec2 u2 = (xf * vec3(1, 0, 1)).xy;
vec2 u3 = (xf * vec3(0, 1, 1)).xy;

v_out [0] = berp(v_in , u1);
v_out [1] = berp(v_in , u2);
v_out [2] = berp(v_in , u3);

}

Listing 1.7. Compute the vertices v out of the sub-triangle associated to a
subdivision key generated from a triangle defined by vertices v in.

i
i

i
i

i
i

i
i

1.3. Adaptive Subdivision on the GPU 7

1.3 Adaptive Subdivision on the GPU

1.3.1 Overview

In this section, we describe a tessellation technique for polygonal geometry
that leverages our implicit subdivision scheme. Our technique computes
an adaptive subdivision for each polygon in the scene, so as to control
their extent in screen-space and hence minimize sub-pixel projections; we
describe how we compute such subdivisions using a distance-based LOD
criterion in Section 1.3.2. Since adaptive subdivisions usually lead to T-
junction polygons, we also discuss how we avoid them entirely; we discuss
the issue of T-junctions in Section 1.3.3.

SubdBufferIn

DispatchComputeIndirect()

LodKernel

SubdBufferOut

CulledSubdBuffer

DispatchCompute(1, 1, 1)

IndirectBatcherKernel

DrawIndirectBuffer

DispatchIndirectBuffer

InstancedGeometryBuffers

DrawElementsIndirect()

RenderKernel

FrameBuffer

swap(SubdBufferIn, SubdBufferOut)

Figure 1.2. OpenGL pipeline of our compute-based tessellation shader. The
green, red, and gray boxes respectively denote GPU memory buffers, GPU code
execution, and CPU code execution.

In practice, our technique requires three GPU kernels with OpenGL 4.5;
Figure 1.2 diagrams the OpenGL pipeline of our implementation. The first
kernel (LodKernel) updates the subdivision buffer in a compute shader
using the algorithms described in the previous section. In addition, we
perform view-frustum culling for each key and write the visible ones to
a buffer (CulledSubdBuffer) using an atomic counter. Next, we launch a
second compute kernel (IndirectBatcherKernel) that prepares an indirect
compute dispatch call for the next subdivision update (i.e., the next in-
vocation of LodKernel), as well as an indirect draw call for the third and
final kernel. The final kernel (RenderKernel) executes the indirect drawing
commands to render the final geometry to the framebuffer (FrameBuffer).
It instances a grid of triangles (InstancedGeometryBuffers) for each key
located in the frustum-culled subdivision buffer (CulledSubdBuffer).

i
i

i
i

i
i

i
i

8 1. Adaptive GPU Tessellation with Compute Shaders

1.3.2 LOD Function

In order to guarantee that the transformed vertices produce rasterizer-
friendly polygons, we rely on a distance-based criterion to determine how
to update the subdivision buffer. Indeed, under perspective projection, the
image plane size s at distance z from the camera scales according to the
relation

s(z) = 2z tan

(
θ

2

)
,

where θ ∈ (0, π] is the horizontal field of view. Based on this observation,
we derive the following routine to determine the ideal subdivision level k
that each key should target:

float distanceToLod(float z)

{

float tmp = s(z) * targetPixelSize / screenResolution;

return -log2(clamp(tmp, 0.0, 1.0));

}

Here, the parameter z denotes the distance from the camera to the subtri-
angle associated to the key being processed. Listing 1.8 provides the GLSL
pseudocode we execute in LodKernel.

buffer VertexBuffer { vec3 u_VertexBuffer []; };
buffer IndexBuffer { uint u_IndexBuffer []; };
buffer SubdBufferIn { uvec2 u_SubdBufferIn []; };

void main()
{

// get threadID (each key is associated to a thread)
int threadID = gl_GlobalInvocationID.x;

// get coarse triangle associated to the key
uint primID = u_SubdBufferIn[threadID].y;
vec3 v_in [3] = vec3 [3](

u_VertexBuffer[u_IndexBuffer[primID * 3]],
u_VertexBuffer[u_IndexBuffer[primID * 3 + 1]],
u_VertexBuffer[u_IndexBuffer[primID * 3 + 2]],

);

// compute distance -based LOD
uint key = u_SubdBufferIn[threadID].x;
vec3 v[3]; subd(key , v_in , v);
float z = distance ((v[1] + v[2]) / 2.0, camPos);
int targetLod = int(distanceToLod(z));

// write to u_SubdBufferOut
updateSubdBuffer(key , targetLod);

}

Listing 1.8. Adaptive subdivision using a distance-based criterion.

i
i

i
i

i
i

i
i

1.3. Adaptive Subdivision on the GPU 9

1.3.3 T-Junction Removal

As for any other adaptive polygon-refinement scheme, our technique can
produce T-junction triangles whenever two neighbouring keys differ in sub-
division level. For instance, Figure 1.1 (c) shows a T-junction between
the neighboring triangles associated to the keys 00, 0101 and 0100. T-
junctions are problematic for rendering because they lead to visible cracks
whenever the vertices are displaced by a smoothing function or a displace-
ment map. Fortunately, our subdivision scheme has the property that it
does not produce T-junctions as long as two neighboring keys differ by no
more than one subdivision level; this is noticeable for the green and blue
keys of Figure 1.1 (c). In order to guarantee such key configurations, we
apply our distance-based criteria to the centroid of the hypotenuse of each
sub-triangle; see Listing 1.8. We observed that this approach guarantees
crack-free renderings for any target edge length lower than 16 pixels (we
noticed some T-junctions above this value when the instanced grid is highly
tessellated). Therefore, we chose to rely on such a system as it avoids the
need for a sophisticated T-junction removal system; Listing 1.9 shows the
code we use in the vertex shader of our RenderKernel.

buffer VertexBuffer { vec3 u_VertexBuffer []; };
buffer IndexBuffer { uint u_IndexBuffer []; };
in vec2 i_InstancedVertex;
in uvec2 i_PerInstanceKey;

void main() {
// get coarse triangle associated to the key
uint primID = i_PerInstanceKey.y;
vec3 v_in [3] = vec3 [3](

u_VertexBuffer[u_IndexBuffer[primID * 3]],
u_VertexBuffer[u_IndexBuffer[primID * 3 + 1]],
u_VertexBuffer[u_IndexBuffer[primID * 3 + 2]],

);

// compute vertex location
uint key = i_PerInstanceKey.x;
vec3 v[3]; subd(key , v_in , v);
vec3 finalVertex = berp(v, i_InstancedVertex);

// displace , deform , project , etc.
}

Listing 1.9. Adaptive subdivision using a distance-based criterion.

1.3.4 Results

To demonstrate the effectiveness of our method, we wrote a renderer for
displacement-mapped terrains, and another one for meshes; our source code
is available on github at https://github.com/jadkhoury/TessellationDemo,
and a terrain rendering result is shown in Figure 1.3. In Table 1.1, we

i
i

i
i

i
i

i
i

10 1. Adaptive GPU Tessellation with Compute Shaders

Figure 1.3. Crack-free, multiresolution terrain rendered entirely on the GPU
using compute-based subdivision and displacement mapping. The alternating
colors show the different subdivision levels.

give the CPU and GPU timings of a zoom-in/zoom-out sequence in the
terrain at 1080p. The camera’s orientation was fixed, looking downwards,
so that the terrain would occupy the whole framebuffer, thus maintaining
constant rasterizeration activity. We configured the renderer to target an
average triangle edge length of 10 pixels; Figure 1.3 shows the wireframe
of such a target. The testing platform is an Intel i7-8700k CPU, running
at 3.70 GHz, and an NVidia GTX1080 GPU with 8GiB of memory. Note
that the CPU activity only consists of OpenGL uniform variables and driver
management. On current implementations, such tasks run asynchronously
to the GPU.

Kernel CPU (ms) GPU (ms) CPU stdev GPU stdev

LOD 0.038 0.042 0.160 0.031
Batch 0.028 0.003 0.011 0.001

Render 0.035 0.184 0.018 0.013

Table 1.1. CPU and GPU timings and their respective standard deviation over
a zoom-in sequence of 5000 frames.

i
i

i
i

i
i

i
i

1.4. Discussion 11

As demonstrated by the reported numbers, the performance of our im-
plementation is both fast and stable. Naturally, the average GPU rendering
time depends on how the terrain is shaded. In our experiment, we use a
constant color so that the reported performances correspond exactly to the
overhead caused by vertex processing of our subdivision technique.

1.4 Discussion

We introduced a novel compute-based subdivision algorithm that runs en-
tirely on the GPU thanks to an implicit representation. In future work, we
would like to explore the feasibility of this representation for more complex
subdivision schemes such as Catmull-Clark. In the meantime, we provide
next a few additional considerations that we think can be relevant in the
context of our work.

How much memory should be allocated for the buffers containing
the subdivision keys? This depends on the target polygon density in
screen space. The buffers should be able to store at least 3×max level + 1
nodes, and do not need to exceed a capacity of 4max level nodes. The lower
bound corresponds to a perfectly restricted subdivision, where each neigh-
boring triangle differ by one level of subdivision at most. The higher bound
gives the number of cells at the finest level in case of uniform subdivision.

Is our subdivision technique prone to Floating-point precision
issues ? There are no issues regarding the implicit subdivision itself, as
each key is represented with bit sequences only. However, problems may
occur when computing the transformation matrices in Listing 1.1. Our 31-
level subdivision implementation does not have this issue, but higher levels
will, eventually. A simple solution to delay the problem on OpenGL4+
hardware is to use double precision, which should provide sufficient comfort
for most applications.

How about combining this technique with tessellation shaders
to overcome the subdivision limits of the hardware ? We have
actually implemented such an approach. Our open-source implementation
is available on github at https://github.com/jdupuy/opengl-framework (see
the demo-isubd-terrain demo). With both approached at hand, we leave it
up to the developper to decide which approach is best given his software
and hardware constraints.

i
i

i
i

i
i

i
i

12 1. Adaptive GPU Tessellation with Compute Shaders

0 1 2 3 4 5 6

0

0.2

0.4

Per-Instance subd level

G
P

U
T

im
e

(m
s)

Lod
Render

0.313

0.084

0.027 0.015 0.012 0.012 0.011

0.439

0.207

0.122

0.088 0.087 0.087 0.086

Figure 1.4. Performance evolution with respect to the level of subdivision of the
instanced triangle grid on an NVidia GTX1080.

(a) (b) (c)

Figure 1.5. Our subdivision technique applied on (a) a triangle mesh using (b)
bilinear interpolation and (c) Phong tessellation [Boubekeur and Alexa 08].

There are two ways to control polygon density. Either use the
implicit subdivision, or refine the instanced triangle grid. Which
approach is best? This will naturally depend on the platform. Our
code provides tools to modify the tessellation of the instanced triangle
grid, so that its impact can be thoroughly measured; Figure 1.4 plots the
performance evolution that we measured on our platform.

Can our implicit subdivision scheme smooth input meshes? Our
implicit subdivision scheme offers the same functionality as tessellation
shaders. Therefore, any smoothing technique that runs with tessellation
shaders run with our subdivision shaders. For instance, the mesh renderer
we provide implements PN-triangles [Vlachos et al. 01] and Phong Tessella-
tion [Boubekeur and Alexa 08] to smooth the surface of the coarse meshes
we refine; Figure 1.5 shows our mesh renderer applying either bilinear in-
terpolation or Phong Tessellation to a coarse triangle mesh.

i
i

i
i

i
i

i
i

1.5. Acknowledgments 13

1.5 Acknowledgments

This chapter is the result of Jad Khoury’s master thesis, which was su-
pervised by Jonathan Dupuy. All authors conducted this work at Unity
Technologies.

Bibliography

[AMD 13] AMD. “GCN Performance Tweets.”, 2013. List of all GCN
performance tweets that were released during the first few months of
2013. Available online (http://developer.amd.com/wordpress/media/
2013/05/GCNPerformanceTweets.pdf).

[Boubekeur and Alexa 08] Tamy Boubekeur and Marc Alexa. “Phong Tes-
sellation.” ACM Transactions on Graphics (Proc. SIGGRAPH Asia
2008) 27:5.

[Cashman 12] Thomas J. Cashman. “Beyond Catmull Clark? A Survey
of Advances in Subdivision Surface Methods.” Comput. Graph. Fo-
rum 31:1 (2012), 42–61. Available online (https://doi.org/10.1111/j.
1467-8659.2011.02083.x).

[Duchaineau et al. 97] Mark Duchaineau, Murray Wolinsky, David E
Sigeti, Mark C Miller, Charles Aldrich, and Mark B Mineev-Weinstein.
“ROAMing terrain: real-time optimally adapting meshes.” In Pro-
ceedings of the 8th Conference on Visualization’97, pp. 81–88. IEEE
Computer Society Press, 1997.

[Mistal 13] Benjamin Mistal. “Gpu terrain subdivision and tesselation.”
GPU Pro 4 (2013), 3–20.

[Niessner et al. 12] Matthias Niessner, Charles Loop, Mark Meyer, and
Tony Derose. “Feature-adaptive GPU Rendering of Catmull-Clark
Subdivision Surfaces.” ACM Trans. Graph. 31:1 (2012), 6:1–6:11.

[Riccio 12] Christophe Riccio. “Southern Islands in deep dive.”, 2012. SIG-
GRAPH Tech Talk. Available online (https://www.g-truc.net/doc/
Siggraph2012%20Tech%20talk.pptx).

[Stam 98] Jos Stam. “Exact Evaluation of Catmull-Clark Subdivision Sur-
faces at Arbitrary Parameter Values.” In Proceedings of the 25th An-
nual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’98, pp. 395–404. New York, NY, USA: ACM, 1998.
Available online (http://doi.acm.org/10.1145/280814.280945).

i
i

i
i

i
i

i
i

14 BIBLIOGRAPHY

[Strugar 09] Filip Strugar. “Continuous distance-dependent level of detail
for rendering heightmaps.” Journal of graphics, GPU, and game tools
14:4 (2009), 57–74.

[Vlachos et al. 01] Alex Vlachos, Jörg Peters, Chas Boyd, and Jason L.
Mitchell. “Curved PN Triangles.” In Proceedings of the 2001 Sym-
posium on Interactive 3D Graphics, I3D ’01, pp. 159–166. New York,
NY, USA: ACM, 2001. Available online (http://doi.acm.org/10.1145/
364338.364387).

