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Figure 1: We show that light transport due to (a) a rough microfacet surface is the same as the light transport due to (b) a semi-infinite
homogeneous microflake volume consisting of (c) non-symmetric microflakes that are reflective on one side and transparent on the other side,
which have the same NDF as (a).

Abstract

We study the links between microfacet and microflake theories from the perspective of linear transport theory. In doing so,
we gain additional insights, find several simplifications and touch upon important open questions as well as possible paths
forward in extending the unification of surface and volume scattering models. First, we introduce a semi-infinite homogeneous
exponential-free-path medium that (a) produces exactly the same light transport as the Smith microsurface scattering model
and the inhomogeneous Smith medium that was recently introduced by Heitz et al, and (b) allows us to rederive all the Smith
masking and shadowing functions in a simple way. Second, we investigate in detail what new aspects of linear transport theory
enable a volume to act like a rough surface. We show that this is mostly due to the use of non-symmetric distributions of
normals and explore how the violation of this symmetry impacts light transport within the microflake volume without breaking
global reciprocity. Finally, we argue that the surface profiles that would be consistent with very rough Smith microsurfaces
have geometrically implausible shapes. To overcome this, we discuss an extension of Smith theory in the volume setting that
includes NDFs on the entire sphere in order to produce a single unified reflectance model capable of describing everything from
a smooth flat mirror all the way to a semi-infinite isotropically scattering medium with both low and high roughness regimes in
between.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Keywords: Microfacet theory, BRDF, BSDF, multiple scattering, anisotropic media

1. Introduction

This paper is a follow up to the recent work of Heitz et
al. [HHdD16], who introduced a new approach to rough surface
scattering. Where most previous parametric BSDF models consider
only a single microsurface interaction, discarding the multiple scat-

tering and thereby losing energy, this new approach makes it prac-
tical to compute all orders of scattering from rough surfaces with
conductive, dielectric or diffuse facets and for a variety of micro-
facet normal distribution functions (NDFs).

The model of Heitz et al. suggests that the scattering of light due
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to rough surfaces is similar to the scattering of light due to partici-
pating media. In particular, Heitz et al. showed that light transport
inside a new kind of heterogeneous microflake volume (anisotropic
media) [JAM∗10] leads to the bidirectional scattering distribution
function (BSDF) as predicted by microfacet theory [TS67] under
the Smith shadowing hypothesis [Smi67]. It is the treatment of
rough surface reflectance using volumes that we wish to investigate
further here.

1.1. Surfaces as Volumes

Heitz et al. explored the properties of light transport on a Smith mi-
crosurface model and arrived at a formulation for light transport in
a heterogeneous microflake volume. This is, perhaps, surprising at
first because the two seemingly incompatible physical scenarios are
very different. Indeed, classical participating media is not capable
of accurately acting like a rough surface—a new phase function and
a new non-symmetric microflake distribution are required. How-
ever, when these are suitably chosen, it is possible to bring the two
models into complete agreement. It is this equivalence that makes
it possible to stochastically evaluate the higher order interactions
of a rough surface directly and accurately. The theoretical implica-
tions of this equivalence are worthy of further attention, especially
in relation to linear transport theory [DM79] as a whole. The two
key components that determine a heterogeneous microflake volume
and that need to be investigated are the free path inside the medium
and its phase function [JAM∗10]. New forms of both were required
to derive a volume that acts like a rough surface.

The Free path The free path depends on the density function that
describes how matter is concentrated throughout the volume; Heitz
et al. use the height probability density function (PDF) of the rough
surface they want to model for their BSDF derivation. In Sec-
tion 4.1, we show that the first non-classical aspect of their model
is that the anisotropic cross-sections of this matter density are non-
symmetric to direction—the interaction probability when passing
through a given location in the medium is not identical to the case
where the direction is reversed. We explore this new aspect of vol-
ume transport, specifically the notion that subsurface violation of
reciprocity nonetheless leads to reciprocal BSDFs.

The Phase Function The phase function is determined from com-
bining a microflake NDF with a micro-BSDF that describes how
light reacts after intersecting matter [JAM∗10, HDCD15]; Heitz et
al. use the microfacet NDF of the rough surface they want to model
as the microflake NDF, and choose between conductor, dielectric
or diffuse micro-BSDFs. In Section 4.3 we propose extending the
microfacet NDFs to include distributions on the entire sphere. We
discuss how moving beyond heightfields extends the utility of the
approach to consider very rough and possibly semi-porous materi-
als that are somewhat like a surface and somewhat like a volume.

1.2. Contributions and Overview

We dedicate the following sections to the investigation of the con-
nection between rough-surface and volume scattering. Rather than
relying on the theoretical framework of Heitz et al., which involves
a heterogeneous microflake volume, we consider a semi-infinite,

homogeneous microflake volume. We show that the light transport
that emerges from such media also maps to a rough surface, while
being mathematically simpler than the model of Heitz et al. In addi-
tion, our derivations lead to new insights regarding the very nature
of surfaces, which we discuss.

We first introduce our semi-infinite homogeneous microflake
volume in Section 2 and discuss its scattering properties. Next, we
show how to derive the model of Heitz et al. and show that it is
equivalent to a microfacet BSDF with Smith shadowing in Sec-
tion 3. Finally, we discuss specific properties of our model and
raise several connections between rough microfacet surfaces and
microflake volumes in Section 4; we hope our discussion will help
in the derivation of a unified representation for matter that supports
volumetric as well as surface like behaviors. In summary our con-
tributions are:

• A new homogeneous derivation of a volume scattering approach
to rough surface scattering that is simpler and more efficient to
evaluate.

• A characterization of the change to previous volume scattering
methods (non-symmetric cross-section) that enables surface-like
behaviour.

• An analysis of reciprocity and its subsurface violation due to
non-symmetric cross-section.

• A possible new approach for high roughness and semi-porous
media using scattering methods analogous to Smith microsur-
face theory.

2. Semi-Infinite Homogeneous Microflake Volume

2.1. Volumetric Light Transport

In computer graphics, the light transport due to participating
media is described by the steady radiative transfer equation
(RTE) [JAM∗10]

ω1 ·∇L+σt L = S. (1)

Here, ω1 ∈ S2 is the direction of radiation, L = L(ω1)≥ 0 is the
radiance, σt = σt(ω1)≥ 0 is the medium’s extinction coefficient,
and S = S(ω1)≥ 0 is the source term that accounts for the radiance
emission of the medium and inscattering. Note that we suppressed
the angular integral part of the RTE into the source term, i.e.,

S(ω1) = σs(ω1)
∫

S2
fp(ω1→ ω2)L(ω2)dω2 +Le(ω1), (2)

where Le ≥ 0 is the radiance emitted by the medium, σs ≥ 0 is the
medium’s scattering coefficient, and fp ≥ 0 is the medium’s phase
function. In order to derive the terms σt , σs, and fp, we need to fix
the geometric properties of our microflake volume.

2.2. Semi-infinite Homogeneous Microflake Volume

Medium Extent We consider a semi-infinite homogeneous mi-
croflake volume, whose interface is located at height z = 0; Fig-
ure 2 shows the geometry of such a volume. The matter density
distribution function ρ = ρ(r)≥ 0, r ∈ R3, which is defined such
that ρ(r)dr gives the number of flakes located within the volume
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Figure 2: The semi-infinite homogeneous microflake volume.

[r,r+dr), is

ρ(r) =

{
0 if zr > 0,
1 otherwise.

(3)

Microflake Distribution The microflake NDF D(ωm) ≥ 0 is
defined such that D(ωm)dωm gives the surface of flakes ori-
ented towards the directions associated with the solid angle
[ωm,ωm +dωm). Note that the NDF does not carry a spatial pa-
rameter r as we follow the classic assumption that the directional
statistics of the microflakes are independent from their location
inside the volume. However, our NDF differs from previous Mi-
croflake NDFs as we do not enforce it to have a symmetric behav-
ior, i.e., D(ωm) 6= D(−ωm). As we will discuss later, this form of
NDF asymmetry is one of the key differences between microflake
volumes that result in surface-like and volume-like light transport.

Microflake Projected Area In addition to spatial independence,
we also follow the other classic assumption that the microflakes
are spatially uncorrelated with one another as in a Poisson pro-
cess. Then, the microflake projected area σ(ω1) ≥ 0, which gives
the area of matter that is visible from direction ω1 ∈ S2, satis-
fies [HDCD15]

σ(ω1) =
∫

S2
〈−ω1,ωm〉D(ωm)dωm. (4)

The microflake projected area is a key quantity for light transport.
Note that whenever D is non-symmetric, σ is also non-symmetric
by construction, i.e., σ(ω1) 6= σ(−ω1).

Microflake BSDF The BSDF fs,µ = fs,µ(ωm,ωi,ωo)≥ 0 de-
scribes how light reacts after intersecting a microflake. We do not
assume any specific micro BSDF in our derivation as it does not
impact our results.

2.3. Terms for Volumetric Light Transport

We now derive the terms of Equation (1) from the geometric prop-
erties of our microflake volume.

Phase Function The phase function is a measure of the probability
density distribution for a scattering process from the incident direc-
tion ω1 into the direction ω2. For a microflake volume, the phase

function satisfies [HDCD15]

fp(ω1→ ω2) =
∫

S2
fs,µ(ωm,−ω1,ω2)〈ω2,ωm〉Dvis(ωm,ω1)dωm,

(5)
where we use the notation 〈ω1,ω2〉 to denote a dot product clamped
to zero if it is negative and Dvis ≥ 0 is the distribution of visible
microflake normals (VNDF), which is defined as

Dvis(ωm,ω1) =
〈−ω1,ωm〉D(ωm)

σ(ω1)
. (6)

Note that it is the microflake BSDF that determines how light reacts
after intersecting a microflake and, as such, completely determines
the category of the material, e.g., conductor, dielectric, etc.

Scattering Coefficient Assuming that the microflakes carry the
same material albedo a≥ 0, the scattering coefficient is [JAM∗10]

σs = aσt . (7)

Extinction Coefficient In a microflake volume, the extinction co-
efficient is the product of the density and the projected area of the
microflakes onto the ray direction. Since the matter density distri-
bution ρ is constant inside our medium, it follows that the extinction
coefficient only depends on the projected area, i.e.,

σt = ρσ (8)

= σ.

Free-Path PDF The free path describes how far light is expected
to travel through our volume without intersecting a microflake.
The geometric configuration of our microflake volume satisfies the
Beer-Lambert law, which stipulates that any free path of length
` ≥ 0 that travels towards direction ωr, has the exponential proba-
bility density function (PDF)

p(`) = σt exp(−σt `)

= σ exp(−σ`) . (9)

Note that the free path PDF p depends on ωr, but we omit it for
clarity. It follows that a free path length ` can be retrieved by inverse
transform sampling a uniform random number U ∈ [0,1) [RSK08]

`=− 1
σt

log(1−U)

=− 1
σ

log(1−U) . (10)

Volumetric Attenuation The distance between two points at re-
spective locations r1 and r2 connected by a ray traveling towards
direction ω1 is `= |r1− r2|. The volumetric attenuation along this
segment is the integral

V (r1
ω1−→ r2) = 1−

∫ `

0
p(`′)d`′

= exp(−σt(ω1)`)

= exp(−σ(ω1)`) . (11)
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Figure 3: The emerging transport. The Smith BSDF emerges from
the light transport within the semi-infinite homogeneous microflake
volume.

2.4. Volumetric Light Transport Properties

In the general case, the light transport produced by our volume as
described in Equation (1) has to be solved numerically. Typically,
this is done with a Monte Carlo simulation, which, intuitively, con-
sists in averaging the behavior of light paths simulated explicitly
inside the microflake volume; Figure 3 illustrates this idea. The
simulation requires the stochastic generation of light paths, i.e.,
Equation (10), as well as the volumetric attenuation due to the me-
dia between two points, i.e., Equation (11). Within the volume, all
light paths depend also on the volume’s phase function, i.e., Equa-
tion (5). We do not discuss this particular simulation here, as this
feature is not relevant to the following discussion; we refer the
reader to the work of Heitz et al. [HHdD16] for more information.
Rather, we show in Section 3 that the classic Smith masking and
shadowing functions can be derived from our model.

3. Derivation of the Smith Shadowing Functions

3.1. Mapping our Media to Smith Microsurfaces

The light transport in both mediums is identical because the single-
scattering albedo and phase function do not depend on depth (this
is analogous to the optical-depth parameterization of plane-parallel
media in classical transport theory).

Smith Density Model The elevations ζ ∈ R of a microsurface are
distributed according to the distribution of heights P1(ζ). It is a
probability density function (PDF) and we denote the cumulative
distribution function (CDF) of heights as C1(ζ) and the inverse
CDF as C−1

1 . The density of the microflake volume associated with
a Smith microsurface derived by Heitz et al. is [HHdD16, Eq. (19)]

ρSmith(ζ) =
P1(ζ)

C1(ζ)
. (12)

Mapping to Homogeneous Media We can map the heights z of a
semi-infinite homogeneous medium to the heights of a Smith mi-
crosurface ζ through the relations

z = log [C1(ζ)] (13)

ζ =C−1
1 [exp(z)] . (14)

Our mapping produces the same medium density since

ρSmith(ζ) = ρ(z)
∂z
∂ζ

=
P1(ζ)

C1(ζ)
(15)

is the expected Smith density of Equation (12); Figure 4 illustrates
the geometry of our mapping.

Simulating Points inside the Volume Simulating points inside
our volume is important for the derivation of the Smith masking-
shadowing functions [HHdD16]. In order to create such a point, we
can first simulate a Smith microsurface height ζ through inverse
transform sampling a random uniform variate U ∈ [0,1) and then
applying Equation (14) to map it to our medium, which gives

z = log [C1(ζ)]

= log
{

C1[C
−1
1 (U)]

}
= log(U) . (16)

surface volume

ζ1

ζ2

ζ3 ζ←→ z
z1

z2

z3

Figure 4: Mapping the semi-infinite medium to a Smith microsur-
face.

3.2. Derivation of the Smith Functions

Heightfield NDF The Smith shadowing functions arise from ex-
ponential attenuation due to our microflake volume if the mi-
croflake NDF corresponds to a heightfield NDF. A heightfield NDF
is a non-symmetric NDF in the sense that its values are nonnegative
in a hemisphereH2 ⊂ S2 and 0 in the other. Moreover, it satisfies∫

S2
D(ωm)〈ωm,ωg〉dωm = 1 (17)

where ωg gives the orientation ofH2.

Smith Lambda Function The Smith Λ function is associated
with the projected area of heightfield NDFs through the rela-
tion [HHdD16, Eq. (21)]

σ(ωi) =
∫

S2
〈−ωi,ωm〉D(ωm)dωm

= Λ(ωi) cosθi. (18)

Note that due to the non-symmetry of the heightfield NDF, we
have [HHdD16, Eq. (22)]

σ(−ωi) =
∫

S2
〈ωi,ωm〉D(ωm)dωm

= [1+Λ(ωi)] cosθi. (19)
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Figure 5: Geometry of the Smith shadowing functions. Left: The
Smith masking function is the probability that a random point r in-
side the volume is visible from outside in direction ωi. Middle: The
Smith masking-shadowing function is the probability that a ran-
dom point r inside the volume is visible from outside from both di-
rections ωi and ωo. Right: The conditional Smith shadowing term
gives the conditional probability that a random point r inside the
volume is visible from outside from direction ωi given it is visible
from outside from direction ωo.

Smith Monostatic Shadowing The Smith monostatic shadowing
function, also known as the Smith masking term, is the probability
that a random point inside the medium at height z is visible from
the outside in direction ωi

E[V (r ωi−→∞)] =
∫ 1

0
V [r(U) ωi−→∞]dU

=
∫ 1

0
exp
[
−| log(U)|σ(ωi)

cosθi

]
dU

=
1

1+ σ(ωi)
cos θi

=
1

1+Λ(ωi)
. (20)

Figure 5 shows the geometry of the Smith monostatic shadowing
function in our microflake volume.

Smith Bistatic Shadowing The Smith bistatic shadowing func-
tion, also known as the Smith masking and shadowing term, is the
probability that a random point inside the medium at height z is
visible from both the outside directions ωi and ωo

E[V (r ωi−→∞)V (r ωo−→∞)]

=
∫ 1

0
V (r(U) ωi−→∞)V (r(U) ωo−→∞)dU

=
∫ 1

0
exp
{
−| log(U)|

[
σ(ωi)

cosθi
+

σ(ωo)

cosθo

]}
dU

=
1

1+ σ(ωi)
cos θi

+
σ(ωo)
cos θo

=
1

1+Λ(ωi)+Λ(ωo)
, (21)

Figure 5 shows the geometry of the Smith bistatic shadowing func-
tion in our microflake volume.

Conditional Smith Shadowing The conditional Smith shadowing
function, also known as the Smith shadowing given masking term,
is the probability that a random point r inside the medium is visible

from the outside in direction ωo. It differs from the Smith monos-
tatic shadowing function in the sense that r is not generated from
Equation (16) but from a path originating from direction ωi

E[V (r ωo−→∞) | V (r ωi−→∞)]

=
∫ 1

0
exp
[
−| log(U)| cosθi

σ(ωi)

σ(ωo)

cosθo

]
dU

=
1

1+ cos θi
σ(ωi)

σ(ωo)
cos θo

=
1+Λ(ωi)

1+Λ(ωi)+Λ(ωo)
. (22)

Figure 5 shows the geometry of the Smith conditional shadowing
function in our microflake volume.

4. Open Questions

4.1. The Reciprocity with Non-Symmetric NDFs

In this section we show that the non-symmetry of the NDF is what
allows for surface-like transport, but at the same time breaks the
reciprocity inside the volume.

Mono-sided Flakes As shown in Figure 6, if the NDF is non-
symmetric, the light transport is non-reciprocal: the light is blocked
by the existing side of the facet, but can go through the other side.

Downward scattering Upward scattering
Non-symmetric Symmetric

Figure 6: Mono-sided flakes. If the NDF is non-symmetric, the
flakes are mono-sided: the light is blocked by the existing side of
the facet, but can go through the other side.

Surface-like Transport with Mono-side Flakes It is precisely be-
cause the NDF is non-symmetric that the volumetric transport is
able to mimic surface-like transport. For instance, Figure 7 shows
the transport occuring on a flat specular microsurface and in a vol-
ume with the same NDF. Thanks to the non-reciprocal flakes, the
light is able to escape the volume after the first bounce and the
light transport is the same. If the flakes were double-sided the light
would intersect the flakes multiple times before leaving the volume
and the transport would be modified.

Non-Reciprocal Transport In general the visibility is non-
reciprocal

V (r1
ω1−→ r2) 6=V (r2

−ω1−−−→ r1) (23)

as illustrated in Figure 8.
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Surface Volume Microflakes

Figure 7: Surface-like transport in our microflake volume. Thanks
to the mono-sided flakes, the light intersects the flakes only on the
upper side, and the light transport in the volume matches the light
transport on a surface.

Geometry r1
ω1−→ r2 r2

−ω1−−−→ r1

medium interface
r1 r2

r3

ω1 ω2

Figure 8: Non-reciprocity of the light transport. Because of the
mono-sided flakes, the projected area is different for two opposite
directions. Hence, the visibility of point r1 for point r2 is different
from the visibility of point r2 for point r1. However, in the case
where the starting and final heights are the same, the light transport
is reciprocal, e.g., from point r1 to point r3 through point r2.

Globally Reciprocal However, if the starting point is at the same
height as the last point (Figure 8), the attenuation along the path is
the same in both directions:

V (r1
ω1−→ r2)V (r2

ω2−→ r3) =V (r3
−ω2−−−→ r2)V (r2

−ω1−−−→ r1) (24)

Hence, the attenuation along a path that starts from outside and
finishes outside (i.e. above 0) is the same in both directions. This
is why the BSDF emerging from the transport in the semi-inifinite
medium is reciprocal.

Open Questions We know that if D is a non-symmetric height-
field microfacet NDF, the emerging transport is reciprocal and this
is also the case if D is a symmetric microflake NDF. Can we deter-
mine the exact set of NDFs D such that the emerging transport is
reciprocal?

Is it possible to model rough-surface scattering with another
interpretation than “mono-sided flakes” due to non-symmetric
NDFs? In microfacet theory, with the surface interpretation, the
NDF is non-symmetric and the flakes are mono-sided because the
ray can only intersect the facets that are on the same side of the sur-
face, i.e., the other side of the surface (and of the flakes) cannot be
intersected. This knowledge (the ray is on one side of the surface) is
what breaks the reciprocity of the light transport inside the medium
if the end points of a path are not at the same height. A point above
the medium is obviously above the surface. However, the lower the
point is inside the medium, the less likely that it is still above the
surface. Hence, the lowest point of a path is the one that carries the
most information. Intuitively, the information loss/gain when the

depth within the medium changes is what breaks the reciprocity of
the light transport. This is also why if the end points of a path are at
the same height, the light transport remains reciprocal. We believe
that the existence of mono-sided flakes in our model is a side effect
of an additional information that remains to be modeled properly,
for instance with a conditional probability. This could yield a gen-
eralized formulation of the reciprocity inside the medium.

Given a general microflake volume represented as voxels, such
as the assets of Jakob et al. [JAM∗10], is it valid to have “surface-
like voxels” that represent non-symmetric NDFs? Or can non-
symmetric NDFs be used only with the semi-infinite medium
model? It is possible that a new conditional model as discussed in
the previous question (with knowledge that the ray is inside/outside
the surface) could yield a generalized and valid light transport for-
mulation and overcome the semi-infinite medium limitation.

4.2. Perspectives from Linear Transport Theory

Scattering Inside the Medium An important aspect of Heitz et
al.’s approach is that the multiple-scattering component of the
BSDF must be evaluated stochastically. While this is unusual for
most parametric microfacet BSDFs, it is very common for BS-
DFs derived from subsurface-scattering models. Such derivations
assume the lateral displacements in the medium are negligible and
average them away or, equivalently, consider uniform illumination
by parallel rays. This plane-parallel analysis in transport theory is
very common and much simpler than the derivation of full BSS-
RDFs.

Connection to Results of Linear Transport Theory For exam-
ple, in the simple case of an isotropically scattering semi-infinite
medium with single-scattering albedo a, the single-scattering
BRDF is known from Chandrasekhar [Cha60] and is simply

f1(ωi,ωo) =
a

4π

1
cosθi + cosθo

. (25)

We note that our model naturally includes such an isotropic
medium with an isotropic phase function. Consider, for example,
isotropic scattering, which arises from mirror reflection from an
isotropic NDF (a constant). As a proof, we derive this single-
scattering BRDF using the methods developed in the previous
sections. The cosine-weighted single-scattering BRDF of a semi-
infinite medium is the phase function fp(ωi,ωo) multiplied by the
shadowing-given-masking function E[V (r ω2−→∞) | V (∞ ω1−→ r)]
of Equation (22):

f1(ωi,ωo) cosθo

= fp(ω1→ ω2)E[V (r ω2−→∞) | V (∞ ω1−→ r)], (26)

In an isotropic medium the isotropic phase function of albedo a is

fp(ω1→ ω2) =
a

4π
, (27)

and since the projected area is constant (σ = 1), the shadowing-
given-masking function Equation (22) simplifies to

E[V (r ω2−→∞) | V (∞ ω1−→ r)] = 1
1+ cos θi

cos θo

. (28)
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With these simplifications, the cosine-weighted single-scattering
BRDF of Equation (26) is

f1(ωi,ωo) cosθo =
a

4π

1
1+ cos θi

cos θo

, (29)

and the BRDF is the result of Equation (25).

Plane-Parallel Analysis The plane-parallel analysis makes it pos-
sible to derive the complete BRDF of the isotropic medium, which
is known as

fr(ωi,ωo) =
a

4π

H(cosθi)H(cosθo)

cosθi + cosθo
(30)

where H is Chandrasekhar’s function, the solution to an inte-
gral equation [Cha60]. A closed-form expression was derived for
H [SW59],

H(u = cosθ) = exp
(
− u

π

∫ π

2

0

log(1− tacot(t))
u2 sin2(t)+ cos2(t)

dt
)
. (31)

Open Questions Chandrasekhar was able to derive this result us-
ing a principle of invariance, avoiding the need for stochastic (ran-
dom walk) evaluation of the full BRDF. His result can also be
arrived at using the alternative singular-eigenfunction [MK73] or
Wiener-Hopf [Wil73] methods. These approaches demonstrate the
power of deterministic analysis of the transport equation. Can they
provide similar utility for rough-surface scattering? Toward this
end, the singular-eigenfunction method has been extended to plane-
parallel transport in anisotropic media [FG07]. In the anisotropic
media case, the discrete eigenvalues no longer occur in conjugate
pairs and the rigorous asymptotic diffusion term satisfies an equa-
tion that includes an adjective flow term [CW92]. An interesting
follow up to this work would be to investigate the inclusion of non-
symmetric cross-sections to support rough-surface scattering such
as in microfacet theory.

4.3. Extension to Spherical NDFs

In this section we consider an extension of the model of Heitz et al.
to include NDFs on the entire sphere in order to exhibit different
high roughness behavior and new reflectance behaviors that might
better approximate semi-porous media.

The Problem with High Roughness A fundamental limitation of
heightfield rough-surface models is that for very high roughness
levels, the surface profiles consistent with those NDFs are unrea-
sonably spiky (Figure 9). The Beckmann NDF, for example, corre-
sponds to quite spiky surfaces past a roughness of about 0.8.

Isotropic Scattering as a Limit of Infinite Roughness The re-
lationship between rough surface and volume scattering offers an
alternative approach to high roughness scattering by considering
that an isotropically scattering semi-infinite medium is, by some
definition, the roughest surface model possible. Further, it happens
that far-field reflectance from a spherical mirror produces isotropic
scattering. These two insights lead us to propose an extension of the
model presented in this paper to permit NDFs on the full sphere.
We propose a comprehensive rough surface scattering model with
an NDF that:

• Is a dirac delta of the up direction for roughness m = 0 (produc-
ing a flat mirror)

• Is asymptotic to the Beckmann NDF for low m
• Smoothly extends into the constant NDF on the entire sphere as

m→∞

Physically, this would correspond to surfaces much like Beck-
mann Gaussian heightfields, but as roughness increases they be-
come semi-porous and eventually turn into a sea of mirror spheres.
Figure 12 shows a possible adequate behavior for a family of spher-
ical NDF smoothly morphing from a rough-surface profile to an
isotropic volume profile. Indeed, as we show in Section 4.2, our
model extends naturally to include an NDF D on the entire sphere
and eventually to Chandrasekhar’s isotropic-scattering model.

Open Questions Additional work is required to investigate the
feasibility of analytically sampling the visible distribution of nor-
mals with such an NDF, which may present a significant challenge,
given the complexity of doing so for Beckmann and GGX [Hd14].
Success would produce a single reflection model that could span
from mirror, rough conductor, semi-porous high roughness con-
ductor and bridge the gap from surface to volume and into Chan-
drasekhar’s BRDF for the isotropic semi-infinite medium. Such re-
flectance distributions might prove useful for better describing ma-
terials in the high reflectance regime as well as possibly predict
aggregate reflectance for volumetric level-of-detail simplification
schemes for light transport.
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Figure 11: Beckmann heightfields.
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Figure 12: Spherical NDF family of scattering cross-sections
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Figure 9: Classic parameterization of microfacet distribution. With common hemispherical microfacet distributions, the roughness parameter
controls the vertical scaling of the surface. Hence, a very high roughness is associated with spiky unrealistic surfaces.
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Figure 10: Alternate NDF parameterization. One could use an NDF that allows for transition between different shapes: hemispherical
(heightfield-like transport), non-hemisherical (non-heightfield surface), and constant (pure volumetric transport).
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5. Conclusion

We have revisited the relationship between rough surface and vol-
ume scattering. We have derived a new homogeneous semi-infinite
microflake model with asymmetric flakes that exactly produces
multiple reflectance from Smith microsurfaces, reducing the com-
plexity of the previous inhomogeneous derivations and strength-
ening the connections between surface and volume scattering. We
uncovered a subsurface violation of reciprocity that arises from
asymmetric microflake cross-sections that is required to make the
volume behave like a surface and showed how an equal-height reci-
procity ensures that the full model is reciprocal. We also proposed
an extension of these methods to include NDFs on the entire sphere
to encompass new reflectance behaviors, such as very rough and
semi-porous media and to bridge the gap between surface and vol-
ume scattering in a single model.
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