An Adaptive Parameterization for
Efficient Material Acquisition and Rendering

"How to efficiently measure BRDFs with a goniophotometer"


Jonathan Dupuy Wenzel Jakob
Unity Technologies EPFL

57 BRDFs
(10 anisotropic)
EPFL's gonio-photometer
Previously infeasible
measurements:
xx
Our Pipeline
Acquisition Time:
(anisotropic) xx 2.5 days
(isotropic) xx 3 hours
© Industrial Light & Magic
Acquired BRDFs: xx

Motivation

Real character Digital double

Motivation

Real character Digital double
Solve $$L_o = \int_{\mathcal{S}^2} L_i \cdot f_r^\perp \cdot d\boldsymbol{\omega}_i $$

Motivation

Real character Digital double
Solve $$L_o = \int_{\mathcal{S}^2} L_i \cdot {\color{red}f_r^\perp} \cdot d\boldsymbol{\omega}_i $$

$$f_r^\perp = f_r(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o, \lambda) \cos \theta_i$$

Incident domain Outgoing domain

$$f_r^\perp = f_r(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o, \lambda) \cos \theta_i$$

Incident domain Outgoing domain
(rough)

$$f_r^\perp = f_r(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o, \lambda) \cos \theta_i$$

Incident domain Outgoing domain
(shiny)

$$f_r^\perp = f_r(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o, \lambda) \cos \theta_i$$

Incident domain Outgoing domain Wavelength
(varying)

Motivation

Real character Digital double
Solve $$L_o = \int_{\mathcal{S}^2} L_i \cdot {\color{red}f_r^\perp} \cdot d\boldsymbol{\omega}_i $$
Acquire ? $$f_r^\perp = f_r^\perp(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o, \lambda) $$

Outline

What makes BRDF measurements difficult ?
A: Curse of dimensionality
How to lower the number of measurements ?
A: Image-based setup ? Use an adaptive parameterization
Is there a way to quickly characterize a material ?
A: We measure retro-reflection
Implementation details + results
Discussion

Problem

Incident domain Outgoing domain Wavelength
(2D) (2D) (1D)

Problem

Incident domain Outgoing domain Wavelength
(2D) (2D) (1D)

Problem

Incident domain Outgoing domain Wavelength
(2D) (2D) (1D)
Spectrometer

Problem

Incident domain Outgoing domain Wavelength
(2D) (2D) (1D)

Problem

Incident domain Outgoing domain Wavelength
(2D) (2D) (1D)
Unknown 4D domain
100⁴ resolution: xx 3+ years x [1 meas/s]
380 MiB per wavelength

Outline

What makes BRDF measurements difficult ?
A: Curse of dimensionality
How to lower the number of measurements ?
A: Through BRDF Parameterization
Is there a way to quickly characterize a material ?
A: We look at retro-reflection
Implementation details + results
Results

BRDF Parameterization

Incident domain Outgoing domain Outgoing domain
(parametric space)

BRDF Parameterization

Incident domain Outgoing domain Outgoing domain
(parametric space)
Sample count:
> 2x max frequency

Rusinkiewicz [1998]

Incident domain Outgoing domain Outgoing domain
(parametric space)

Rusinkiewicz [1998]

Incident domain Outgoing domain Outgoing domain
(parametric space)

MERL [Matusik et al. 2003]

Incident domain Outgoing domain Outgoing domain
(parametric space)

MERL [Matusik et al. 2003]

Incident domain Outgoing domain Outgoing domain
(parametric space)

Isotropic BRDFs

Incident domain Outgoing domain Outgoing domain
(parametric space)
(azimuthal symmetry)

MERL [Matusik et al. 2003]

Incident domain Outgoing domain Outgoing domain
(parametric space)
90x90x180 resolution: xx 16 days x [1 meas/s]
12 MiB per wavelength

MERL [Matusik et al. 2003]

Spherical samples Image-based setup
90x90x180 resolution: xx 3 hours x [135 meas/s]
12 MiB per wavelength

Outline

What makes BRDF measurements difficult ?
A: Curse of dimensionality
How to lower the number of measurements ?
A: Image-based setup ?
Is there a way to quickly characterize a material ?
A: We look at retro-reflection
Implementation details + results
Results

MERL [Matusik et al. 2003]

Spherical samples Image-based setup
Fundamental limitations
  • Isotropic BRDFs only
  • Recquires spherical samples
  • Artifacts due to camera

MERL [Matusik et al. 2003]

Spherical samples Image-based setup
Fundamental limitations
  • Isotropic BRDFs only
  • Recquires spherical samples
  • Artifacts due to camera
source: [Lucat et al. 2017]

MERL [Matusik et al. 2003]

$\,$ $\,$ $\,$
$\,$ $\,$ $\,$

Outline

What makes BRDF measurements difficult ?
A: Curse of dimensionality
How to lower the number of measurements ?
A: Image-based setup ?
Is there a way to quickly characterize a material ?
A: We look at retro-reflection
Implementation details + results
Results

Outline

What makes BRDF measurements difficult ?
A: Curse of dimensionality
How to lower the number of measurements ?
A: Image-based setup ?
Is there a way to quickly characterize a material ?
A: We look at retro-reflection
Implementation details + results
Results

Rusinkiewicz [1998]

Incident domain Outgoing domain Outgoing domain
(parametric space)
Limitation:
frequency
🔗
shininess

Our Approach

Incident domain Outgoing domain Outgoing domain
(parametric space)
Adaptive:
low frequency

Outline

What makes BRDF measurements difficult ?
A: Curse of dimensionality
How to lower the number of measurements ?
A: Image-based setup ? Use an adaptive parameterization
Is there a way to quickly characterize a material ?
A: We measure retro-reflection
Implementation details + results
Results

Retro-reflective Domain (2D)

$f_r^\perp(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$
Rough
Shiny
Anisotropic
45x180 resolution: xx 2 hours x [1 meas/s]
31 KiB per wavelength

Retro-reflective Domain (2D)

$f_r^\perp(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$
Rough
Shiny
Anisotropic

Why Retro-reflection ?

${\color{red}f_r^\perp}(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$

Microfacet Theory

${\color{red}f_r^\perp}(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$

Microfacet Theory

NDF
${\color{red}f_r^\perp}(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$

Microfacet Theory

NDF
${\color{red}f_r^\perp}(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$
intuition: $ {\color{red}f_r^\perp}(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o) \propto {\color{blue}D}(\boldsymbol{\omega}_h) $

Retro-reflection

NDF
${\color{red}f_r^\perp}(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$
intuition: $ {\color{red}f_r^\perp}(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o) \propto {\color{blue}D}(\boldsymbol{\omega}_h) $

Retro-reflection

NDF
${\color{red}f_r^\perp}(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$
intuition: $ {\color{red}f_r^\perp}(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o) \propto {\color{blue}D}(\boldsymbol{\omega}_h) $

NDF Extraction

NDF
${\color{red}f_r^\perp}(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$
Solve Fredholm equation of the second kind

$$ {\color{blue}D}(\boldsymbol{\omega}) \propto \int_\mathcal{S^2} K (\boldsymbol{\omega}, \boldsymbol{\omega}_m) \; {\color{blue}D}(\boldsymbol{\omega}_m) \; d \boldsymbol{\omega}_m $$
with Kernel
$$ K(\boldsymbol{\omega}, \boldsymbol{\omega}_m) = {\color{red}f_r^\perp}(\boldsymbol{\omega}, \boldsymbol{\omega}) \langle \boldsymbol{\omega} \cdot \boldsymbol{\omega}_m \rangle $$
intuition: $ {\color{red}f_r^\perp}(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o) \propto {\color{blue}D}(\boldsymbol{\omega}_h) $

Retro-reflection Acquisition

NDF
${\color{red}f_r^\perp}(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$
intuition: $ {\color{red}f_r^\perp}(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o) \propto {\color{blue}D}(\boldsymbol{\omega}_h) $
laser beam dump photodiode beamsplitter sample isolator

Our Parameterization

NDF
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$

Our Parameterization

NDF
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$

Our Parameterization

NDF
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$
$\boldsymbol{\omega}_m$
$\boldsymbol{\omega}_i$

Our Parameterization

NDF
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$
$\boldsymbol{\omega}_m$
$\boldsymbol{\omega}_i$
$\langle \boldsymbol{\omega}_i \cdot \boldsymbol{\omega}_m \rangle$

Our Parameterization

NDF
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$
$\boldsymbol{\omega}_m$
$\boldsymbol{\omega}_i$
$\langle \boldsymbol{\omega}_i \cdot \boldsymbol{\omega}_m \rangle$
intuition: sample $ \propto \langle \boldsymbol{\omega}_i \cdot \boldsymbol{\omega}_m \rangle {\color{blue}D}(\boldsymbol{\omega}_m) $

Our Parameterization

NDF
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$
intuition: sample $ \propto \langle \boldsymbol{\omega}_i \cdot \boldsymbol{\omega}_m \rangle {\color{blue}D}(\boldsymbol{\omega}_m) $
$\boldsymbol{\omega}_m$
$\boldsymbol{\omega}_i$
$\langle \boldsymbol{\omega}_i \cdot \boldsymbol{\omega}_m \rangle$
parametric BRDF
$\;$
$$g$$
$$\;\;\shortmid\!\longrightarrow\;$$
.

Our Parameterization

NDF
NDF: ${\color{blue}D}(\boldsymbol{\omega}_m)$
intuition: sample $ \propto \langle \boldsymbol{\omega}_i \cdot \boldsymbol{\omega}_m \rangle {\color{blue}D}(\boldsymbol{\omega}_m) $
$\boldsymbol{\omega}_m$
$\boldsymbol{\omega}_i$
$\langle \boldsymbol{\omega}_i \cdot \boldsymbol{\omega}_m \rangle$
parametric BRDF
$\;$
$$g$$
$$\;\;\shortmid\!\longrightarrow\;$$
.
Built-in importance sampling

Our Parameterization

$f_r^\perp(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$ Incident domain Outgoing domain
Prepass, then:

Our Parameterization

$f_r^\perp(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$ Incident domain Outgoing domain
Prepass, then:
[Importance Sample]
[Importance Sample]

Our Parameterization

$f_r^\perp(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$ Incident domain Outgoing domain
Prepass, then:
[Importance Sample]
[Importance Sample]
32x32

Our Parameterization

$f_r^\perp(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$ Incident domain Outgoing domain

Shiny Material
Prepass, then:
[Importance Sample]
[Importance Sample]
32x32

Our Parameterization

$f_r^\perp(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$ Incident domain Outgoing domain

Rough Material
Prepass, then:
[Importance Sample]
[Importance Sample]
32x32

Our Parameterization

$f_r^\perp(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$ Incident domain Outgoing domain

Anisotropic Material
Prepass, then:
[Importance Sample]
[Importance Sample]
32x32

Our Parameterization

$f_r^\perp(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$ Incident domain Outgoing domain

Anisotropic Material
Prepass, then:
[Importance Sample]
[Importance Sample]
32x32

Our Parameterization

$f_r^\perp(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$ Incident domain Outgoing domain

Anisotropic Material
Prepass, then:
[Importance Sample]
[Importance Sample]
32x32
8x16
100K samples: xx 2.5 days x [1 meas/s]
512 KiB per wavelength

Our Parameterization

$f_r^\perp(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$ Incident domain Outgoing domain

Anisotropic Material
Prepass, then:
[Importance Sample]
[Importance Sample]
32x32
8x16

Our Parameterization

$f_r^\perp(\boldsymbol{\omega}_i = \boldsymbol{\omega}_o)$ Incident domain Outgoing domain

Isotropic Material
Prepass, then:
[Importance Sample]
[Importance Sample]
32x32
8x1
8K samples: xx 2.2 hours x [1 meas/s]
32 KiB per wavelength
Our Pipeline

Results (1024 spp)

Microfacet-like
vch_dragon_eye_red vch_frozen_amethyst vch_silk_blue vch_ultra_pink

Results (1024 spp)

Microfacet-like
aniso_copper_sheet aniso_metallic_paper_copper aniso_metallic_paper_gold aniso_brushed_aluminium

Hazy lobes

Results (1024 spp)

Microfacet-like ?
satin_white satin_blue satin_gold satin_purple

Coloured-highlights

Results (1024 spp)

Microfacet-like ?
aurora_white cc_nothern_aurora aniso_sari_silk_2color aniso_morpho_melenaus

Funky!

Outline

What makes BRDF measurements difficult ?
A: Curse of dimensionality
How to lower the number of measurements ?
A: Image-based setup ? Use an adaptive parameterization
Is there a way to quickly characterize a material ?
A: We measure retro-reflection
Implementation details + results
Results
Take aways:
(BRDF modelling & rendering) xx New public spectral BRDF database
(gonio-photometric acquisition) xx New practical acquisition technique

Acknowledgements

  • Naty Hoffman (ILM)
  • Andre Mazzone (ILM)
  • Olesya Jakob
  • Benoit Ruiz
  • Peter Apian-Bennewitz
  • Laurent Belcour
  • Romain Pacanowski
darth_vader_pants millennium_falcon tarkin_tunic solo_m_68
Industrial ?
Your material
here !
l3_37_dark_green l3_37_matte l3_37_metallic

Acknowledgements

  • Naty Hoffman (ILM)
  • Andre Mazzone (ILM)
  • Olesya Jakob
  • Benoit Ruiz
  • Peter Apian-Bennewitz
  • Laurent Belcour
  • Romain Pacanowski

Acknowledgements

  • Naty Hoffman (ILM)
  • Andre Mazzone (ILM)
  • Olesya Jakob
  • Benoit Ruiz
  • Peter Apian-Bennewitz
  • Laurent Belcour
  • Romain Pacanowski

Acknowledgements

  • Naty Hoffman (ILM)
  • Andre Mazzone (ILM)
  • Olesya Jakob
  • Benoit Ruiz
  • Peter Apian-Bennewitz
  • Laurent Belcour
  • Romain Pacanowski

Acknowledgements

  • Naty Hoffman (ILM)
  • Andre Mazzone (ILM)
  • Olesya Jakob
  • Benoit Ruiz
  • Peter Apian-Bennewitz
  • Laurent Belcour
  • Romain Pacanowski

Acknowledgements

  • Naty Hoffman (ILM)
  • Andre Mazzone (ILM)
  • Olesya Jakob
  • Benoit Ruiz
  • Peter Apian-Bennewitz
  • Laurent Belcour
  • Romain Pacanowski
laser beam dump photodiode beamsplitter sample isolator
Catch 'em all @
http://rgl.epfl.ch/materials






Backup Slides

Main Insight


Implementation Details

Storage

$\;\;\;$ $\;\;\;$ $\;\;\;$ $\;\;\;$ $\;\;\;$ $\;\;\;$

Storage

$\;\;\;$ $\;\;\;$ $\;\;\;$ $\;\;\;$ $\;\;\;$ $\;\;\;$

Validation: GGX

Ref Ours
Ref Ours
Isotropic Anisotropic

Validation: MERL

Ref (36 MiB) Ours (96 KiB)
Ref (36 MiB) Ours (96 KiB)

Validation: Measurements


Resolution: 8x32x32

Validation: Measurements


Resolution: 8x48x48

Importance Sampling

$$L_o = \int_{\mathcal{H}^2} L_i \cdot f_r^\perp \cdot d\boldsymbol{\omega}_i$$

Importance Sampling

$$L_o = \int_{\mathcal{H}^2} L_i \cdot f_r^\perp \cdot d\boldsymbol{\omega}_i$$
Substitution $$\boldsymbol{\omega}_i = g(\mathbf{u})$$
$$ \Rightarrow d\boldsymbol{\omega}_i = \left| \frac{dg}{d\mathbf{u}} \right| d\mathbf{u} $$
$$= \int_{\mathcal{U}^2} L_i \cdot f_r^\perp \cdot \left| \frac{dg}{d\mathbf{u}} \right| \cdot d\mathbf{u}$$
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.

Importance Sampling

$$L_o = \int_{\mathcal{H}^2} L_i \cdot f_r^\perp \cdot d\boldsymbol{\omega}_i$$
Substitution $$\boldsymbol{\omega}_i = g(\mathbf{u})$$
$$ \Rightarrow d\boldsymbol{\omega}_i = \left| \frac{dg}{d\mathbf{u}} \right| d\mathbf{u} $$
$$= \int_{\mathcal{U}^2} L_i \cdot f_r^\perp \cdot \left| \frac{dg}{d\mathbf{u}} \right| \cdot d\mathbf{u}$$
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.

Importance Sampling

$$L_o = \int_{\mathcal{H}^2} L_i \cdot f_r^\perp \cdot d\boldsymbol{\omega}_i$$
Substitution $$\boldsymbol{\omega}_i = g(\mathbf{u})$$
$$ \Rightarrow d\boldsymbol{\omega}_i = \left| \frac{dg}{d\mathbf{u}} \right| d\mathbf{u} $$
$$= \int_{\mathcal{U}^2} L_i \cdot f_r^\perp \cdot \left| \frac{dg}{d\mathbf{u}} \right| \cdot d\mathbf{u}$$
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.

Importance Sampling

$$L_o = \int_{\mathcal{H}^2} L_i \cdot f_r^\perp \cdot d\boldsymbol{\omega}_i$$
$$= \int_{\mathcal{U}^2} L_i \cdot f_r^\perp \cdot \left| \frac{dg}{d\mathbf{u}} \right| \cdot d\mathbf{u}$$
Substitution $$\boldsymbol{\omega}_i = g(\mathbf{u})$$
$$ \Rightarrow d\boldsymbol{\omega}_i = \left| \frac{dg}{d\mathbf{u}} \right| d\mathbf{u} $$
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.
low-frequency
Perfect sampling condition:
$$ \left| \frac{dg}{d\mathbf{u}} \right| \propto \frac{1}{f_r^\perp}$$
$$f_r^\perp \cdot \left| \frac{dg}{d\mathbf{u}} \right|$$

Importance Sampling

$$L_o = \int_{\mathcal{H}^2} L_i \cdot f_r^\perp \cdot d\boldsymbol{\omega}_i$$
$$= \int_{\mathcal{U}^2} L_i \cdot f_r^\perp \cdot \left| \frac{dg}{d\mathbf{u}} \right| \cdot d\mathbf{u}$$
Substitution $$\boldsymbol{\omega}_i = g(\mathbf{u})$$
$$ \Rightarrow d\boldsymbol{\omega}_i = \left| \frac{dg}{d\mathbf{u}} \right| d\mathbf{u} $$
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.
low-frequency
Perfect sampling condition:
$$ \left| \frac{dg}{d\mathbf{u}} \right| \propto \frac{1}{f_r^\perp}$$
$$f_r^\perp \cdot \left| \frac{dg}{d\mathbf{u}} \right|$$

Importance Sampling

$$L_o = \int_{\mathcal{H}^2} L_i \cdot f_r^\perp \cdot d\boldsymbol{\omega}_i$$
$$= \int_{\mathcal{U}^2} L_i \cdot f_r^\perp \cdot \left| \frac{dg}{d\mathbf{u}} \right| \cdot d\mathbf{u}$$
Substitution $$\boldsymbol{\omega}_i = g(\mathbf{u})$$
$$ \Rightarrow d\boldsymbol{\omega}_i = \left| \frac{dg}{d\mathbf{u}} \right| d\mathbf{u} $$
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.
low-frequency
Perfect sampling condition:
$$ \left| \frac{dg}{d\mathbf{u}} \right| \propto \frac{1}{f_r^\perp}$$
$$f_r^\perp \cdot \left| \frac{dg}{d\mathbf{u}} \right|$$
Importance sampling Parameterization
Efficient importance sampling $\Rightarrow$ Adaptive parameterization

BRDF Acquisition

Gonioreflectometer setup
  • Pab PGII
  • Retroreflection
  • BRDF domain


Practical concerns
  • Shadowing
  • Symmetries
  • Validation

BRDF Acquisition

Gonioreflectometer setup
  • Pab PGII
  • Retroreflection
  • BRDF domain


Practical concerns
  • Shadowing
  • Symmetries
  • Validation
laser beam dump photodiode beamsplitter sample isolator

BRDF Acquisition

Gonioreflectometer setup
  • Pab PGII
  • Retroreflection
  • BRDF domain


Practical concerns
  • Shadowing
  • Symmetries
  • Validation
xenon arc lamp sample sensor collimation lens focusing lens pinhole

BRDF Acquisition

Gonioreflectometer setup
  • Pab PGII
  • Retroreflection
  • BRDF domain


Practical concerns
  • Shadowing
  • Symmetries
  • Validation
Slices (raw)
Slices (post-processed)
Shadowed!

BRDF Acquisition

Gonioreflectometer setup
  • Pab PGII
  • Retroreflection
  • BRDF domain


Practical concerns
  • Shadowing
  • Symmetries
  • Validation
Standard Res Higher Res
8x32x32 8x48x48

$$f_r^\perp = f_r(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o, \lambda) \cos \theta_i$$


Setup for BRDF Acquisition

Overview

Target: BRDF acquisition
  • New BRDF database
  • Gonioreflectometer setup


Theoretical contribution
  • BRDF parameterization
  • Adaptive
  • Predictive
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.
low frequency high frequency

Overview

Target: BRDF acquisition
  • New BRDF database
  • Gonioreflectometer setup


Theoretical contribution
  • BRDF parameterization
  • Adaptive
  • Predictive
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.
low frequency high frequency

Overview

Target: BRDF acquisition
  • New BRDF database
  • Gonioreflectometer setup


Theoretical contribution
  • BRDF parameterization
  • Adaptive
  • Predictive
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.
low frequency high frequency

Overview

Target: BRDF acquisition
  • New BRDF database
  • Gonioreflectometer setup


Theoretical contribution
  • BRDF parameterization
  • Adaptive
  • Predictive
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.
low frequency low frequency

Overview

Target: BRDF acquisition
  • New BRDF database
  • Gonioreflectometer setup


Theoretical contribution
  • BRDF parameterization
  • Adaptive
  • Predictive
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.
low frequency high frequency

Overview

Target: BRDF acquisition
  • New BRDF database
  • Gonioreflectometer setup


Theoretical contribution
  • BRDF parameterization
  • Adaptive
  • Predictive
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.
low frequency high frequency

Overview

Target: BRDF acquisition
  • New BRDF database
  • Gonioreflectometer setup


Theoretical contribution
  • BRDF parameterization
  • Adaptive
  • Predictive
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.
low frequency frequency ?
?

Overview

Target: BRDF acquisition
  • New BRDF database
  • Gonioreflectometer setup


Theoretical contribution
  • BRDF parameterization
  • Adaptive
  • Predictive
parametric domain BRDF domain
$$g$$
$$\shortmid\!\longrightarrow$$
.
$$\;\;\;\; g^{-1}$$
$$\longleftarrow\!\shortmid$$
.
low frequency frequency ?
?